
1

Variants of non-negative least-mean-square
algorithm and convergence analysis

Jie Chen, Student Member, IEEE, Cédric Richard, Senior Member, IEEE,
Jose Carlos M. Bermudez, Senior Member, IEEE, Paul Honeine, Member, IEEE

Abstract—Due to the inherent physical characteristics of sys-
tems under investigation, non-negativity is one of the most
interesting constraints that can usually be imposed on the
parameters to estimate. The Non-Negative Least-Mean-Square
algorithm (NNLMS) was proposed to adaptively find solutions of
a typical Wiener filtering problem but with the side constraint
that the resulting weights need to be non-negative. It has been
shown to have good convergence properties. Nevertheless, certain
practical applications may benefit from the use of modified
versions of this algorithm. In this paper, we derive three variants
of NNLMS. Each variant aims at improving the NNLMS per-
formance regarding one of the following aspects: sensitivity of
input power, unbalance of convergence rates for different weights
and computational cost. We study the stochastic behavior of
the adaptive weights for these three new algorithms for non-
stationary environments. This study leads to analytical models
to predict the first and second order moment behaviors of the
weights for Gaussian inputs. Simulation results are presented to
illustrate the performance of the new algorithms and the accuracy
of the derived models.

I. INTRODUCTION

Optimization of a cost function given a set of constraints is
a common objective in signal processing estimation problems.
The constraints are usually imposed by system specifications
which provide a priori information on the feasible set of so-
lutions. The solution of estimation problems under constraints
poses special problems for online applications. Common real-
time signal processing restrictions on computational complex-
ity and memory requirements tend to rule out several good
solutions to the constrained optimization problem.

Non-negativity is one of the most commonly stated con-
straints. It is often imposed on the parameters to estimate
in order to avoid physically absurd and uninterpretable re-
sults. Non-negativity constraints have been used for image
deblurring [1], deconvolution of system impulse response
estimation [2] and audio processing [3]. Another similar
problem is the non-negative matrix factorization (NMF), which
is now a popular dimension reduction technique used in many
applications [4], [5], [6]. This problem is closely related
to blind deconvolution, and has found direct application in

This work has been partly supported by CNPq grant No. 305377/2009-4.
J. Chen and P. Honeine are with the Institute Charles Delaunay, CNRS,

University of Technology of Troyes, 10010 Troyes cedex, France (e-mail:
chenjieg@sina.com; paul.honeine@utt.fr)

C. Richard is with côte d’Azur Observatory, CNRS, University of
Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2, France (e-mail:
cedric.richard@unice.fr)

J.-C. M. Bermudez is with the Department of Electrical Engineering, Fed-
eral University of Santa Catarina 88040-900, Florian?polis, SC, Brazil (e-mail:
j.bermudez@ieee.org).

neuroscience [7] and in hyperspectral imaging [8]. Separation
of non-negative mixture of non-negative sources has also been
considered in [9], [10].

Over the last fifteen years, a variety of methods have
been developed to tackle non-negative least-square (NNLS)
problems. Active set techniques for NNLS use the fact that
if the set of variables which activate constraints is known,
then the solution of the constrained least-square problem can
be obtained by solving an unconstrained one that includes
only inactive variables. The active set algorithm of Lawson
and Hanson [11] is a batch resolution technique for NNLS
problems. It has become a standard among the most frequently
used methods. In [12], Bro and De Jong introduced a modifi-
cation of the latter, called Fast NNLS, which takes advantage
of the special characteristics of iterative algorithms involving
repeated use of non-negativity constraints. Projected gradient
algorithms [13], [14], [15], [16] form another class, which
is based on successive projections onto the feasible region.
In [17], Lin used this kind of algorithm for NMF problems.
Low memory requirements and simplicity make algorithms in
this class attractive for large scale problems. Nevertheless, they
are characterized by slow convergence rate if not combined
with appropriate step size selection. The class of multiplicative
algorithms is very popular for dealing with NMF problems [5],
[18]. Particularly efficient updates were derived in this way
for a large number of problems involving non-negativity
constraints [19]. However, these algorithms require batch pro-
cessing, which is not suitable for online system identification
problems. In [20], the problem of online system identification
under non-negativity constraints on the parameters to estimate
was investigated. An LMS-type adaptive algorithm, called
Non-Negative Least-Mean-Square (NNLMS) was proposed
to solve the Wiener problem under the constraint that the
resulting weights need to be non-negative. It was based on the
stochastic gradient descent approach combined with a fixed
point iteration which converges to a solution satisfying the
Karush-Kuhn-Tucker conditions. The stochastic behavior of
this algorithm was also analyzed in [20].

In this paper, we extend the work of [20] and derive useful
variants of the NNLMS algorithm. Each of these variants is
derived to improve the NNLMS properties in some sense.
A normalized algorithm is proposed to reduce the NNLMS
performance sensitivity to the input power value. An exponen-
tial algorithm is proposed to improve the balance of weight
convergence rates. Compared to NNLMS, the new algorithm
leads to faster convergence of the weights in the active set
(weights for which the inequality constraint is satisfied with

2

the equal sign). Finally, a sign-based algorithm is proposed to
reduce implementation cost in critical real-time applications.

The rest of this paper is organized as follows. Section II
reviews the system identification problem under non-negative
constraints and the NNLMS algorithm. Section III motivates
and introduces the NNLMS variants. In Section IV and
Section V, the transient behavior of each of these variants
is analyzed. Analytical models are derived for the mean
weight and for the mean-square error behavior. The accuracy
of these models is illustrated through simulations. A final
example compares the performance of the proposed algorithms
with those of NLMS and Projected NLMS in solving an
unconstrained non-negative parameter estimation problem.

II. REVIEW OF NON-NEGATIVE LEAST-MEAN-SQUARE
ALGORITHM

Consider the estimation problem depicted in Fig. 1. The
unknown system is characterized by real-valued observations

y(n) = α∗
>
x(n) + z(n), (1)

z(n)

y(n)
x(n)

α(n)

Algo.

+

+

+

−
e(n)α∗

Fig. 1. Adaptive system under study

where α∗ = [α∗1, α
∗
2, . . . , α

∗
N]> is the vector of the model

parameters and x(n) = [x(n), x(n− 1), . . . , x(n−N + 1)]>

is the input data vector. The input signal x(n) and the additive
noise z(n) are assumed stationary and zero-mean.

In certain applications, inherent physical characteristics of
systems under investigation impose a non-negativity constraint
on the estimate α of the system parameters. Therefore, the
problem of identifying the optimum non-negative model can
be formalized as follows

αo = arg min
α
J(α)

subject to αo
i ≥ 0, ∀i,

(2)

where J(α) is a continuously differentiable and strictly convex
cost function in RN , and αo is the solution to the constrained
optimization problem.

A. A fixed-point iteration scheme

To solve the problem (2), let us consider its Lagrangian
function Q(α,λ) given by [21]

Q(α,λ) = J(α)− λ>α,

where λ is the vector of non-negative Lagrange multipliers.
The Karush-Kuhn-Tucker conditions must necessarily be sat-
isfied at the optimum defined by αo, λo, namely,

∇αQ(αo,λo) = 0 (3)
αo
i [λo]i = 0, i = 1, . . . , N (4)

where ∇α stands for the gradient operator with respect to α.
Using ∇αQ(α,λ) = ∇αJ(α) − λ, these equations can be
combined into the following expression

αo
i [−∇αJ(αo)]i = 0, i = 1, . . . , N (5)

where the extra minus sign is just used to make a gradient
descent of J(α) apparent. To solve equation (5) iteratively,
two important points have to be noticed. First, D(−∇αJ(α))
is also a descent direction of J(α) ifD is a symmetric positive
definite matrix. Second, equations of the form ϕ(u) = 0 can
be solved with a fixed-point iteration algorithm by considering
the problem u = u+ϕ(u) under some conditions on function
ϕ. Implementing this strategy with equation (5) leads to the
component-wise gradient descent algorithm

αi(n+ 1) = αi(n) + ηi(n)fi(α(n))αi(n)[−∇αJ(α(n))]i
(6)

where ηi(n) a positive step size required to get a contraction
scheme and to control the convergence rate, and fi(α(n)) > 0
is the i-th entry of a diagonal matrix D(n). Function fi(α(n))
in (6) is an arbitrary positive function of α(n). Some criteria
J(α) are defined only for parameter vectors α with positive
entries, e.g., the Itakura-Saito distance and the Kullback-
Leibler divergence. If necessary, this condition can be man-
aged by an appropriate choice of the step size parameter. Let
us assume that αi(n) ≥ 0. Non-negativity of αi(n+ 1) in (6)
is guaranteed if

1 + ηi(n)fi(α(n))[−∇αJ(α(n)]i ≥ 0. (7)

If [∇αJ(α(n))]i ≤ 0, condition (7) is clearly satisfied and
non-negativity does not impose any restriction on the step size.
Conversely, if [∇αJ(α(n))]i > 0, non-negativity of αi(n+1)
holds if

0 ≤ ηi(n) ≤ 1

fi(α(n)) [∇αJ(α(n))]i
. (8)

Using a single step size η(n) in (0, ηmax(n)] for all entries of
α so that

ηmax(n) = min
i

1

fi(α(n)) [∇αJ(α(n))]i
, i = 1, . . . , N

(9)
the update equation (6) can be written in vector form as

α(n+ 1) = α(n) + η(n)d(n) (10)

where the ith entry of the weight adjustment direction d(n)
defined as follows

[d(n)]i = fi(α(n))αi(n)[−∇αJ(α(n))]i (11)

is a descent direction of J(α) because fi[α(n)]αi(n) ≥ 0.
It should be noted that condition (9) on the step size η(n)
guarantees the non-negativity of α(n) for all n, but does not
ensure algorithm stability.

3

B. The Non-Negative Least-Mean-Square algorithm

Let us now consider the mean-square error criterion
Jmse(α) = E{[y(n) − α>x(n)]2} to be minimized with
respect to α so that

αo = arg min
α
E{[y(n)−α>x(n)]2}

subject to αoi ≥ 0, ∀i
(12)

where the non-negativity constraint applies only to the opti-
mum solution because Jmse(α) is defined for α with entries
αi that can be positive or negative. The gradient of Jmse(α)
with respect to α is ∇αJ(α) = 2 (Rxα − rxy), where Rx

is the autocorrelation matrix of x(n) and rxy is the corre-
lation vector between x(n) and y(n). Following a stochastic
gradient approach, the second-order moments Rx and rxy are
replaced in (11) by the instantaneous estimates x(n)x>(n)
and y(n)x(n), respectively. Then, choosing fi(α(n)) = 1/2
for all i in (6), a fixed positive step-size η, defining Dx(n) =
diag{x(n)} and Dα(n) = diag{α(n)}, and noting that
Dα(n)x(n) = Dx(n)α(n) leads to the stochastic update
given by

α(n+ 1) = α(n) + η e(n)Dx(n)α(n) (13)

where e(n) = y(n) − α>(n)x(n). A detailed study of this
algorithm, named Non-Negative LMS (NNLMS) can be found
in [20].

III. VARIANTS OF THE NON-NEGATIVE
LEAST-MEAN-SQUARE ALGORITHM

A. Normalized NNLMS

A direct extension of the original algorithm is the Normal-
ized NNLMS. Conditioned on α(n), the product e(n)Dx(n)
in (13) has dimension of signal power. Thus, η is inversely
proportional to signal power. Hence, setting a constant value
for η leads to different weight updates for different signal
power levels. This is the same sensitivity to signal power
verified in the LMS algorithm. A popular way to address
this limitation is to normalize the weight update by the
input vector squared `2−norm which yields the Normalized
NNLMS update equation

αN(n+1) = αN(n)+
η

x>(n)x(n)
e(n)Dx(n)αN(n) (14)

Like in Normalized LMS (NLMS) algorithm, adding a
small positive regularization parameter ε to the denominator
x>(n)x(n) may be necessary to avoid numerical difficul-
ties when x>(n)x(n) becomes very small. The resulting ε-
Normalized NNLMS will then be

αN(n+ 1) = αN(n) +
η

x>(n)x(n) + ε
e(n)Dx(n)αN(n)

(15)
where we maintained the notation αN(n) because (14) is a
particular case of (15) for ε = 0. From now on, we refer
to (15) simply as the Normalized NNLMS algorithm.

B. Exponential NNLMS

Each component αi(n) in the update term of (13) can be
viewed as a distinct variable step size adjustment along the ith
axis1. Hence, each component of α(n) will have a different
convergence rate in general. Specifically in the case of weights
in the active set (those that tend to zero in steady-state), the
convergence rate will progressively reduce in time, becoming
very small near steady-state. To alleviate this convergence rate
unbalance, we introduce the Exponential NNLMS algorithm.

To achieve a faster convergence for the adaptive coefficients
as they get close to zero we propose the use of fi(αE(n)) =
αγ−1Ei

(n) in (11), with parameter γ chosen in order to attract
small values of αEi(n) towards zero. This leads to the ith
weight update equation

αEi
(n+ 1) = αEi

(n) + η e(n)xi(n)αγEi
(n). (16)

For 0 < γ < 1, the ith weight update in (16) becomes
larger than that in (13) when |αEi(n)| < 1, thus accelerating
convergence towards a null steady-state coefficient value.

The condition for αEi(n + 1) ≥ 0 given αEi(n) ≥ 0 can
be easily determined from (16) as

η ≤ 1

e(n)αγ−1Ei
(n)

, ∀ i, n. (17)

This condition, however, is not useful for design purposes,
since it requires a priori knowledge of the algorithm behavior.
We then propose a modified version of the update equation
(16) that allows for instantaneous negative values of αEi

(n).
The problem with real and negative instantaneous values of
αEi(n) is that it may lead to a complex value for αγEi

for
0 < γ < 1. To obtain always real values for αγEi

we propose
to use γ = p/q with p and q odd integers and 0 < p <
q. The oddness of p and q guarantees that sgn(αγEi

(n)) =
sgn(αEi

(n)). Then, the real solution for αγEi
can be obtained

by calculating sgn{αEi
} |αEi

|γ . This leads to the following
weight update equation for the Exponential NNLMS algorithm
in vector form:

αE(n+ 1) = αE(n) + η e(n)Dx(n)α
(γ)
E (n) (18a)

with the ith component of α(γ)
E (n) defined as

[α
(γ)
E (n)]i = sign{αEi(n)} |αEi(n)|γ . (18b)

As in the gamma correction used in image processing, an
exponent in the range 0 < γ < 1 reduces the dynamic range
of each αEi

(n). Large values of αEi
(n) will be compressed

towards 1 and small values of αEi(n) will be increased to
prevent from stalling convergence. When γ = 1, the update
equation degenerates into the NNLMS algorithm (13). Using
γ > 1 is generally not recommended, as it tends to spread the
vector component values.

1Note that Eq. (13) can be written as α(n + 1) = α(n) +
ηDα(n)x(n)e(n). Hence, Dα(n) multiplies the ith gradient component
e(n)x(n− i+ 1) of the classical LMS algorithm by αi(n).

4

C. Sign-Sign NNLMS

Like Sign-Sign LMS, which has been included in the CCITT
standard for adaptive differential pulse code modulation [22],
the motivation for introducing a Sign-Sign NNLMS algorithm
is its computational simplicity and its robustness against
disturbances [23]. Replacing the input regressor vector and
the estimation error in the update term with their signs reduces
computation time and dynamic range requirements by replac-
ing multiplications with shifts in real-time implementations.
The Sign-Sign NNLMS algorithm is given by

αS(n+ 1) = αS(n) + η sgn{e(n)} sgn{Dx(n)}αS(n) (19)

After the two signs are evaluated, the ith component update
is given by

αSi
(n+ 1) = αSi

(n)± η αSi
(n) (20)

where the sign before η is determined by sgn{e(n)xi(n)}. The
step-size η is usually selected as a power of 2−1, say η = 2−m

for some integer m > 0. In this case, Equation (20) can be
efficiently implemented using shift-add operations. Moreover,
the non-negativity constraint will be always satisfied if αS is
initialized with a positive vector and 0 < η < 1. Table I com-
pares the computation complexities of NNLMS and its three
variants described above. The rightmost column describes the
anticipated property of each algorithm, to be verified in the
following.

IV. MEAN WEIGHT BEHAVIOR

Convergence in the mean sense of the NNLMS algo-
rithm (13) has been studied in [20] for a stationary environ-
ment. We now study the stochastic behavior of the NNLMS
variants introduced in Section III for fixed step sizes and for
a time variant unconstrained solution given by

α∗(n) = α∗o(n) + ξ(n) (21)

where α∗o(n) is a deterministic time-variant mean and ξ(n) is
zero-mean with covariance matrix Ξ = σ2

ξI and independent
of any other signal. This simple model provides some infor-
mation on how the performances of the proposed algorithms
are affected by a time variant optimal solution which consists
of a deterministic trajectory and a random perturbation. The
analysis using more elaborate non-stationarity models such as
the random walk model or the autoregressive model [24] leads
to mathematically intractable situations. This is due to the
extra multiplication of the weight update term by a function
of α(n) in (13), (15), (18) and (19), as compared to the
LMS algorithm. For the random walk model, the recursive
equation for the covariance matrix of the adaptive weight
vector becomes a function of the optimal weight covariance
matrix, which becomes unbounded as time progresses [24].
For the autoregressive model, a nonlinear term given by the
product of the weight error vector and the optimal weight
update makes it impossible to determine a recursive adaptive
weight vector covariance matrix equation in the state-space
form [25]. The model (21) leads to a tractable analysis and
still permits inferences about the behavior of the algorithms
in randomly time variant environments by varying the power

σ2
ξ of ξ(n). Inferences on the ability of the algorithm to track

mean weight variations are also possible but require a different
model run for each type of mean time variation of α∗o(n) to
be investigated.

To conserve space and to simplify notation without ambigu-
ity, from now on we use the generic notations α(n) and αi(n)
whenever the given expression is valid for all the algorithms
under study. Notations αN, αE and αS will be used only for
expressions which are specific to the corresponding algorithm.
The same notational observation applies to any vector or
matrix when referring to a specific algorithm.

For the analyses that follow, we shall define the weight error
vector with respect to the unconstrained solution α∗(n) as

ṽ(n) = α(n)−α∗(n). (22)

and the weight error vector with respect to the mean uncon-
strained solution α∗o(n) as

v(n) = α(n)−α∗o(n). (23)

The two vectors are related by ṽ(n) = v(n)− ξ(n).

A. Statistical assumptions

The following analysis is performed for x(n) and z(n)
zero-mean stationary Gaussian and for z(n) white and sta-
tistically independent of any other signal. We assume in the
subsequent mean weight behavior analysis that the input and
weight vectors are statistically independent, according to the
Independence Assumption [24]. This assumption is typical
in the study of adaptive algorithms. It is sometimes used
for simplification and frequently required for mathematical
tractability. The simulation results will show that the resulting
analytical models have low sensitivity to this assumption, as
they accurately predict the behavior of the three algorithms.

B. Normalized NNLMS algorithm

Using (22) with the appropriate subscript in (15) and e(n) =
y(n)−α>N(n)x(n) = z(n)− (vN(n)− ξ(n))> x(n) yields

vN(n+ 1) = vN(n) +
η

x>(n)x(n) + ε
z(n)Dx(n)vN(n)

+
η

x>(n)x(n) + ε
z(n)Dx(n)α∗o(n)

− η

x>(n)x(n) + ε
Dx(n)α∗o(n)x>(n)vN(n)

− η

x>(n)x(n) + ε
Dx(n)vN(n)v>N(n)x(n)

+
η

x>(n)x(n) + ε
Dx(n)vN(n) ξ>(n)x(n)

+
η

x>(n)x(n) + ε
Dx(n)α∗o(n) ξ>(n)x(n)−∆N(n).

(24)

where ∆N(n) = α∗o(n + 1) − α∗o(n) is a deterministic
vector proportional to the derivative of the mean unconstrained
optimal solution.

Taking the expected value of (24) and noting that the
expectations of the second, third, sixth and seventh terms on

5

TABLE I
COMPUTATIONAL COMPLEXITY

Algorithm Recursion Computational cost per iteration Main property
+ × sgn (·)γ

NNLMS Equation (13) 2N 3N + 1 Original one, simplicity
Norm. NNLMS Equation (15) 3N 4N + 1 Insensitivity to input power
Exp. NNLMS Equation (18) 2N 3N + 1 N Balance on weight convergence
S-S NNLMS Equation (19) N 2N N Reduced computational cost

the r.h.s. are equal to zero by virtue of the natures of z(n) and
ξ(n) yields

E{vN(n+ 1)} = E{vN(n)}

− ηE
{

1

x>(n)x(n) + ε
Dx(n)α∗o(n)x>(n)vN(n)

}
− ηE

{
1

x>(n)x(n) + ε
Dx(n)vN(n)v>N(n)x(n)

}
−∆N(n).

(25)

Using the independence assumption, the second expectation
in the r.h.s. of (25) can be written as

E

{
1

x>(n)x(n) + ε
Dx(n)α∗o(n)x>(n)vN(n)

}
=Dα∗o

(n)E

{
x(n)x>(n)

x>(n)x(n) + ε

}
E{vN(n)}

(26)

Evaluation of the first expected value in the r.h.s. of (26)
requires approximations. Each numerator element is given
by x(n − i)x(n − j). The random part of the denominator
is given by

∑N−1
k=0 x

2(n − k). A common approximation
that works well for reasonably large N is to neglect the
correlation between these two variates, as the latter tends to
vary much slower than the former [26], [27]. Moreover, given
its slow variation we approximate x>(n)x(n) by its mean
value Nσ2

x, which is reasonable for large values of N . Using
these approximations yields

E

{
1

x>(n)x(n) + ε
Dx(n)α∗o(n)x>(n)vN(n)

}
≈ 1

Nσ2
x + ε

Dα∗o
(n)RxE{vN(n)}.

(27)

Using again x>(n)x(n) ≈ Nσ2
x and removing it from the

expected value, the ith component of the second expectation
in the r.h.s. of (25) is[

Dx(n)vN(n)v>N(n)x(n)
]
i

=

N∑
j=1

x(n− i+ 1) vNi
(n) vNj

(n)x(n− j + 1).
(28)

Taking the expectation, using the independence assumption
and defining KN(n) = E{vN(n)v>N(n)} we obtain[
E{Dx(n)vN(n)v>N(n)x(n)}

]
i

=

N∑
j=1

rx(j − i) [KN(n)]ij

=[RxKN(n)]ii (29)

which yields

E{Dx(n)vN(n)v>N(n)x(n)} = diag{RxKN(n)}

where diag{·} denotes the vector of diagonal entries in the
matrix. Hence, (25) becomes

E{vN(n+ 1)} =

(
I − η

Nσ2
x + ε

Dα∗o
(n)Rx

)
E{vN(n)}

− η

Nσ2
x + ε

diag{RxKN(n)}−∆N(n). (30)

This recursion for E{vN(n)} requires a model for KN(n). A
recursive model will be derived for KN(n) in Section V, see
(44). That model can be used along with (30) to predict the
mean weight behavior of the Normalized NNLMS algorithm.
Nevertheless, we have found that a sufficiently accurate and
more intuitive mean behavior model can be obtained by ne-
glecting the weight error fluctuations and using the following
separation approximation

KN(n) ≈ E{vN(n)}E{v>N(n)}. (31)

This approximation has been successfully used in [20] to study
the mean behavior of the NNLMS algorithm. A discussion
about the validity of the approximation can be found in [20].
Extensive simulation results have shown that this approx-
imation achieves adequate accuracy in modeling the mean
behavior of the adaptive weights. We thus obtain the following
model

E{vN(n+ 1)} =

(
I − η

Nσ2
x + ε

Dα∗o
(n)Rx

)
E{vN(n)}

− η

Nσ2
x + ε

diag
{
RxE{vN(n)}E{v>N(n)}

}
−∆N(n).

(32)

C. Exponential NNLMS algorithm

Using (22) with the appropriate subscript in (18), e(n) =
y(n) − α>E (n)x(n) = z(n) − (vE(n) − ξ(n))> x(n), and
considering that sign{αEi

} |αEi
|γ is equal to the real solution

of αγEi
, the Exponential NNLMS weight error update equation

can be written as
vE(n+ 1)

=vE(n) + η e(n)Dx(n)
(
vE(n) +α∗o(n)

)(γ)
=vE(n) + η z(n)Dx(n)

(
vE(n) +α∗o(n)

)(γ)
− ηDx(n)

(
vE(n) +α∗o(n)

)(γ)
v>E (n)x(n)

+η ξ>(n)x(n)
(
vE(n) +α∗o(n)

)(γ)−∆E(n).

(33)

where (vE(n) +α∗o(n)
)(γ)

is a real vector.
The nonlinear term (vE(n) + α∗o(n)(n))(γ) on the r.h.s.

complicates the evaluation of the expected value of (33) be-
cause the statistics of the weight error vector are unknown. We
have again found out that using a zero-th order approximation

6

of vE(n) is sufficient to provide a reasonably good model for
the mean weight error behavior. Thus, we make

(vEi
(n) + α∗oi(n))γ ≈ (E{vEi

(n)}+ α∗oi(n))γ . (34)

Using (34) in (33), taking the expected value and considering
the statistical properties of z(n) and ξ(n) yields

E{vE(n+ 1)}
≈E{vE(n)} − η E{Dx(n)

(
E{vE(n)}+α∗o(n)

)(γ)
· x>(n)vE(n)}−∆E(n)

=
(
IN − ηDr(n)Rx

)
E{vE(n)}−∆E(n)

(35)

where IN is the N × N identity matrix and Dr(n) is an
N ×N diagonal matrix defined as Dr(n) = diag{r(n)} with
r(n) being the N × 1 vector whose ith component is ri(n) =
(E{vEi

(n)}+α∗oi(n))γ . It is simple to verify that this model
collapses to the NNLMS model derived in [20] for p = q = 1.

D. Sign-Sign NNLMS algorithm

The statistical analysis of the Sign-Sign NNLMS algorithm
behavior is complicated by the fact that the weight update term
is discontinuous in both the input vector x(n) and the error
e(n) [28]. To make that analysis tractable, we consider the
case of input signal x(n) zero-mean and Gaussian [23], [28].

Using (22) with the appropriate subscript in (19) and e(n) =
y(n)−α>S (n)x(n) = z(n)−(vS(n)−ξ(n))> x(n), the Sign-
Sign NNLMS weight error update equation can be written as

vS(n+ 1) =vS(n)+η sgn{z(n)−v>S (n)x(n)+ξ>(n)x(n)}
· sgn{Dx(n)} (vS(n) +α∗o(n))−∆S(n). (36)

Note that, unlike the former two variants, the non-stationarity
effect appears in the weight error update equation (36) as
a nonlinear function of ξ(n). The ith component of (36) is
given by

vSi
(n+ 1) = vSi

(n) + η sgn
{
z(n)− v>S (n)x(n)

+ ξ>(n)x(n)
}

sgn
{
xi(n)

}
(vSi

(n) + α∗oi(n))−∆Si
(n).

(37)

To determine the expected value of (37), we first note that it
has been demonstrated in [28], [29] using Price’s theorem [30]
that

E
{

sgn{θ1} sgn{θ2}
}

=
2

π
sin−1

(
E{θ1θ2}
σθ1σθ2

)
(38)

for θ1 and θ2 two zero-mean jointly Gaussian variables with
variances σ2

θ1
and σ2

θ2
, respectively. Then, noting that z(n)−

v>S (n)x(n)+ξ>(n)x(n) and xi(n) are zero-mean Gaussian
when conditioned on vS(n) and ξ(n), we assume them jointly
Gaussian2 and use the result in (38) to obtain

2As x(n) and z(n) are independent and both Gaussian, [x(n), z(n)] is
jointly Gaussian. When conditioned on vS(n) and ξ(n), [x>(n), z(n) −
v>S (n)x(n) + ξ>(n)x(n)] is jointly Gaussian as a linear transformation of
[x>(n), z(n)].

E
{

sgn{z(n)− v>S (n)x(n)+ξ>(n)x(n)}

· sgn{xi(n)}|vS(n), ξ(n)
}

≈ 2

π
sin−1

(
−R

>
i vS(n)−R>i ξ(n)

σx σe|vS(n),ξ(n)

) (39)

where Ri the i-th column of R and σ2
e|vS(n),ξ(n)

is the
variance of e(n) when conditioned on vS(n) and ξ(n) .

Now, since sin−1(·) is a nonlinear function and the distri-
bution of its argument is unknown, we proceed as we did for
the Exponential NNLMS algorithm and replace the nonlinear
function by its zero-th order approximation

E
{

sgn{z(n)− v>S (n)x(n) + ξ>(n)x(n)} sgn{xi(n)}
}

≈ 2

π
sin−1

(
− R>i E{vS(n)}
σxσe|E{vS(n)},Ξ

)
(40)

with
σe|E{vS(n)},Ξ

=

√
σ2
z + tr

{
RxE{vS(n)}E{v>S (n)}

}
+ trace{RxΞ}

(41)

Taking the expected value of (37), using the results (39) and
(40) and expressing the result in vector form yields the mean
weight error vector behavior model

E{vS(n+ 1)} =
(
IN + ηDp(n)

)
E{vS(n)}

+ ηDp(n)α∗o(n)−∆S(n)
(42)

where Dp(n) is the N × N diagonal matrix Dp(n) =
diag{p(n)} with p(n) being the N×1 vector whose ith entry
is given by (40).

V. SECOND MOMENT ANALYSIS

We now study the behavior of the second-order moments
of the adaptive weights for the three algorithms proposed in
Section III. The analysis is performed under the same statis-
tical hypotheses used in the previous section. The following
additional assumptions are used in the subsequent analysis:
A1 : The input vector x(n) is Gaussian.
A2 : The weight error vector v(n) is statistically independent

of x(n)x>(n). The reasoning for this approximation has
been discussed in detail in [31].

A3 : The statistical dependence of v(n)v>(n) and v(n) is
neglected, following the same reasoning valid for A2,
see [31].

A4 : v(n) and (x>(n)v(n))2 are statistically independent
given A2. This is because (x>(n)v(n))2 is a linear
combination of the entries in v(n)v>(n). Hence, this ap-
proximation follows the same reasoning discussed in [31]
to justify A2.

These assumptions are typical in the study of adaptive algo-
rithms. They are sometimes used for simplification and some-
times required for mathematical feasibility. The simulation
results will show that these assumptions lead to analytical

7

models which are accurate enough in predicting the behavior
of the algorithms for design purposes.

The excess means square estimation error (EMSE) is given
by ζ(n) = E

{
ṽ>(n)x(n)x>(n)ṽ(n)

}
. Using the relation

between ṽ(n) and v(n), the properties of ξ(n), and noting
from (24), (33) and (36) that v(n) and ξ(n) are independent,
we can write ζ(n) as

ζ(n) = E
{

(v(n)− ξ(n))>x(n)x>(n)(v(n)− ξ(n))
}

= trace{RxK(n)}+ trace{RxΞ} (43)

with K(n) = E
{
v(n)v>(n)

}
. The term trace{RxΞ} is the

contribution of the random non-stationarity of the system to
the EMSE. In the following, we derive recursive models for
K(n) for each of the algorithms.

A. Normalized NNLMS algorithm

Post-multiplying (24) by its transpose, taking the expecta-
tion, using the approximation x>(n)x(n) ≈ Nσ2

x in (24),
defining η̃ = η/(Nσ2

x + ε), using assumptions A1–A4 and
proceeding as in [20] leads to

KN(n+ 1) = KN(n)

− η̃
(
P 1N(n)KN(n) +KN(n)P>1N(n)+P 5N(n)+P>5N(n)

)
+ η̃2

(
P 6N(n) + P 7N(n) + P>7N(n) + P 8N(n)

)
+ η̃2σ2

z

(
P 2N(n) + P 3N(n) + P>3N(n) + P 4N(n)

)
+ η̃2 (P 9N(n) + P 10N(n) + P 11N(n) + P>11N(n))

+K∆N(n) (44)

with

P 1N(n) = E{Dx(n)α∗o(n)x(n)} = Dα∗o
(n)Rx. (45)

P 2N(n) = E{Dx(n)α∗o(n)α∗o(n)
>
Dx(n)}

= Dα∗o
(n)RxDα∗o

(n).
(46)

P 3N(n) = E{Dx(n)vN(n)α∗o(n)
>
Dx(n)}

≈ E{DvN(n)}RxDα∗o
(n).

(47)

P 4N(n) = E{Dx(n)vN(n)v>N(n)Dx(n)} ≈ Rx ◦KN(n)
(48)

where ◦ denotes the so-called Hadamard entry-wise product,

P 5N(n) = E{vN(n)x>(n)vN(n)v>N(n)Dx(n)}
≈ KN(n)RxE{DvN(n)}. (49)

P 6N(n)

=E{Dx(n)α∗o(n)x>(n)vN(n)v>N(n)x(n)α∗o(n)
>
Dx(n)}

=Dα∗o
(n)QN(n)Dα∗o

(n). (50)

where the matrix QN(n) is defined by QN(n) =
Dα∗o

(n) (2RxKN(n)Rx + trace{RxKN(n)}Rx),

P 7N(n)

=E{Dx(n)α∗o(n)x>(n)vN(n)x>(n)vN(n)v>N(n)Dx(n)}
≈Dα∗o

(n)QN(n)E{DvN(n)}. (51)

P 8N(n)

=E{Dx(n)vN(n)v>N(n)x(n)x>(n)vN(n)v>N(n)Dx(n)}
=QN(n) ◦KN(n). (52)

P 9N(n) =E{ξ>(n)x(n)ξ>(n)x(n)Dx(n)

· vN(n)v>N(n)Dx(n)}
(53)

P 10N(n) =E{ξ>(n)x(n)ξ>(n)x(n)Dx(n)

·α∗o(n)α∗>o (n)Dx(n)}
(54)

and

P 11N(n) =E{ξ>(n)x(n)ξ>(n)x(n)Dx(n)

· vN(n)α∗>o (n)Dx(n)}
(55)

In obtaining (44), it was considered that the products of the
last two term of (24) by the other terms lead to zero mean
values due to the properties of ξ(n).

Expected values P 1N(n) through P 8N(n) correspond to the
terms of the weight error vector recursive equation derived for
the NNLMS algorithm in [20] with η̃ substituted for η. Thus,
we use the results from [20] and indicate their values directly
in (45) through (52). We now derive expressions for P 9N(n)
through P 11N(n). These terms convey the effect of the random
part of the environment non-stationarity.

Computing (i, j)th entry of P 9N(n) yields

[P 9N]ij(n)

= E

{∑
k

∑
l

ξk(n)ξl(n)xk(n)xl(n)xi(n)vNi
(n)vNj

(n)xj(n)

}
=
∑
k

∑
l

E {ξk(n)ξl(n)} E
{
vNi

(n)vNj
(n)
}

· E {xk(n)xl(n)xi(n)xj(n)}
(56)

As E {ξk(n)ξl(n)} 6= 0 only for k = l, [P 9N]ij(n) =
σ2
ξ

∑
k[KN(n)]ij E

{
x2k(n)xi(n)xj(n)

}
. Using the Gaussian

moment factorizing theorem yields
∑
k E

{
x2k(n)xi(n)xj(n)

}
=
(
[Rx]ij [Rx]kk +[Rx]ik[Rx]jk

)
=
[
Rx trace{Rx} +

2RxRx

]
ij

. This enables us to write the result in matrix form

P 9N(n) = σ2
ξKN(n) ◦ (Rx trace{Rx}+ 2RxRx) (57)

Similarly, we have

P 10N(n) = σ2
ξ

(
α∗o(n)α∗>o (n)

)
◦ (Rx trace{Rx}+ 2RxRx)

(58)

P 11N(n) =σ2
ξ

(
E {vN(n)}α∗>o (n)

)
◦ (Rx trace{Rx}+ 2RxRx)

(59)

The last term K∆N(n) conveys the effect of deterministic
variation of the mean of system weights. Observing the terms
multiplied with ∆N(n), we have

K∆N
(n)

=∆N(n)∆>N(n)−∆N(n)(E {vN(n+ 1)}+ ∆N(n))>

− (E {vN(n+ 1)}+ ∆N(n))∆>N(n)

=−∆N(n)∆>N(n)−∆N(n)E {vN(n+ 1)}>

− E {vN(n+ 1)}∆>N(n) (60)

8

B. Exponential NNLMS algorithm

The second order moment analysis of the Exponential
NNLMS algorithm requires an improvement on approximation
(34) for the nonlinearity (vE(n) +α∗o(n))(γ) in (33). We use
instead the following first order approximation for the real-
valued solution of (vEi

(n) + α∗oi(n))γ :

vEi
(n) + α∗oi(n))γ

≈(E {vEi
(n)}+ α∗oi(n))γ + γ g(E {vEi

(n)})
· (E {vEi

(n)}+ α∗oi(n))γ−1 (vEi
(n)− E {vEi

(n)})
(61)

where

g(E {vEi
(n)}) =1−

[
u
(
E {vEi

(n)}+ α∗oi(n) + ε
)

− u
(
E {vEi(n)}+ α∗oi(n)− ε

)] (62)

with u(·) being the unit step function and ε a small
constant. The reason to include the gate function g
about E {vEi

(n)} + α∗oi(n) in the regular Taylor series
is that the derivative of (vEi

(n) + α∗oi(n))γ tends to
infinity if vEi(n) approaches −α∗oi(n). It is simple to
verify that limvEi

(n)→−α∗oi (n) g(E {vEi(n)}) (E {vEi(n)} +

α∗oi(n))γ−1 = 0. The zero-th order approximation is sufficient
about the point where the function is equal to zero. With this
new approximation, the term on vEi

(n) in (61) will include
moments of the weight error vector which are necessary to
proper modeling its fluctuations.

To use vector notation, we define two deterministic vectors
r(n) and s(n) whose ith entries are respectively

ri =(E {vEi
(n)}+ α∗oi(n))γ

− γg(E {vEi
(n)})(E {vEi

(n)}+ α∗oi(n))γ−1E {vEi
(n)}

si =γ g(E {vEi
(n)}) (E {vEi

(n)}+ α∗oi(n))γ−1

respectively. We define also the corresponding diagonal ma-
trices Dr(n) = diag{r(n)} and Ds(n) = diag{s(n)}. With
these new definitions, the linear approximation can be written
in vector form as

(vE(n) +α∗o(n)
)(γ) ≈ r(n) +Ds(n)vE(n) (63)

Post-multiplying (33) by its transpose, using (63), taking
the expected value, using assumptions A1–A4 and defining
matrix DvE(n) = diag{vE(n)} yields, after simple algebraic
manipulations as done in [20]

KE(n+ 1)

=KE(n)− η
(
P 1E(n)KE(n) +KE(n)P>1E(n)

)
− η

(
P 5E(n)KE(n) +KE(n)P>5E(n)

)
+ η2

(
P 6E(n) + P 7E(n) + P>7E(n) + P 8E(n)

)
+ η2σ2

z

(
P 2E(n) + P 3E(n) + P>3E(n) + P 4E(n)

)
+ η2P 9E(n) +K∆E(n)

(64)

with the eight moments P 1E(n)− P 8E(n) given by

P 1E(n) = E
{
Dx(n) r(n)x>(n)

}
= Dr(n)Rx. (65)

P 2E(n) = E{Dx(n)r(n)r>(n)Dx(n)} ≈Dr(n)RxDr(n).
(66)

P 3E(n) = E{Dx(n) r(n)v>E (n)Ds(n)Dx(n)}
≈Dr(n)RxE{DvE(n)}Ds(n)

(67)

P 4E(n) = E{Dx(n)Ds(n)vE(n)v>E (n)Ds(n)Dx(n)}
≈Ds(n)

(
Rx ◦KE(n)

)
Ds(n). (68)

P 5E(n) =
{
v>E (n)x(n)Dx(n)Ds(n)

}
= diag

{
RxE{vE(n)}

}
Ds(n)

(69)

P 6E(n)

=E{v>E (n)x(n)Dx(n) r(n) r>(n)Dx(n)x>(n)vE(n)}
≈Dr(n)QE(n)Dr(n). (70)

where the matrix QE(n) in above equations is defined by
QE(n) = 2RxKE(n)Rx + trace{RxKE(n)}Rx

P 7E(n)

= E{v>E (n)x(n)Dx(n)r(n)v>E (n)Ds(n)Dx(n)x>(n)vE(n)}
≈Dr(n)QE(n)E{DvE(n)}Ds(n). (71)

and

P 8E(n) =E{v>E (n)x(n)Dx(n)Ds(n)vE(n)v>E (n)

·Ds(n)Dx(n)x>(n)vE(n)}
≈Ds(n)

(
QE(n) ◦KE(n)

)
Ds(n).

(72)

The expectation P 9E(n) conveys the non-stationarity effects
and is given by

P 9E(n) =E
{

(ξ>(n)x(n))2
(
vE(n) +α∗o(n)

)(γ)
·
(
vE(n) +α∗o(n)

)(γ)>} (73)

Using the first order approximation (63) and simple manipu-
lations yields

P 9E(n)

= trace{ΞRx}
{
r(n)r>(n) +Ds(n)KE(n)Ds(n)

+ r(n)E
{
v>E (n)

}
Ds(n) +Ds(n)E {vE(n)} r>(n)

} (74)

The last term K∆E
(n) is obtained in the same form of (60)

K∆E(n) =−∆E(n)∆>E (n)−∆E(n)E {vE(n+ 1)}>

− E {vE(n+ 1)}∆>E (n) (75)

C. Sign-Sign NNLMS algorithm

Using the weight error vector definition vS(n) =
αS(n) − α∗o(n) in (19) and sgn{e(n)}sgn{Dx(n)} =
sgn{Dx(n)e(n)} yields

vS(n+ 1) =vS(n) + η sgn{Dx(n) e(n)}vS(n)

+ η sgn{Dx(n) e(n)}α∗o(n)−∆S(n)
(76)

9

Post-multiplying (76) by its transpose, taking the expected
value and rearranging the terms leads to

KS(n+ 1)

= KS(n) + η
(
P 1S(n) + P>1S(n)

)
+ η

(
P 2S(n) + P>2S(n)

)
+ η2

(
P 3S(n) + P 4S(n) + P>4S(n) + P 5S(n)

)
+K∆S

(n)
(77)

where

P 1S(n) = E{vS(n)α∗>o sgn{Dx(n) e(n)}} (78)

P 2S(n) = E{vS(n)v>S (n) sgn{Dx(n) e(n)}} (79)

P 3S(n) = E{sgn{Dx(n)e(n)}α∗o(n)α∗>o
· sgn{Dx(n)e(n)}} (80)

P 4S(n) = E{sgn{Dx(n)e(n)}α∗o(n)v>S (n)

· sgn{Dx(n)e(n)}} (81)

P 5S(n) = E{sgn{Dx(n)e(n)}v(n)v>S (n)

· sgn{Dx(n)e(n)}} (82)

These expected values are calculated in the following for x(n)
Gaussian.
Expected value P 1S(n):
Using the properties of statistical expectation P 1S(n) can be
written as

P 1S(n) =Ev

{
vS(n)α∗>o (n)

E
{

sgn{Dx(n) e(n)|vS(n), ξ(n)}
}}
.

(83)

The conditional expectation in (83) is given by (39), which
must be approximated. Approximation (40) for the ith element
of (39) is too simple to predict the weight error fluctuations.
A more suitable approximation is given by a first order Taylor
series expansion:

2

π
sin−1

(
− R>i vS(n)

σxσe|vS(n),ξ(n)

)

≈ 2

π
sin−1

(
− R>i E{vS(n)}
σxσe|E{vS(n)},Ξ

)

− 2

π

R>i (vS(n)− E{vS(n)})

σxσe|E{vS(n)},Ξ

√√√√1−
(
R>i E{vS(n)})
σxσe|E{vS(n)},Ξ

)2

=qi(n) + s>i (n)vS(n).

(84)

where the scalar qi(n) and the vector si(n) are deterministic
variables defined respectively as

qi(n) =
2

π
sin−1

(
− R>i E{vS(n)}
σxσe|E{vS(n)},Ξ

)

+
2

π

R>i E{vS(n)}

σxσe|E{vS(n)},Ξ)

√√√√1−
(
R>i E{vS(n)})
σxσe|E{vS(n)},Ξ

)2

(85)

si(n) = − 2

π

Ri

σxσe|E{vS(n)},Ξ

√√√√1−
(
R>i E{vS(n)})
σxσe|E{vS(n)},Ξ

)2

(86)
with σe|E{vS(n)},Ξ defined in (41).

Using (84) in (83) and defining the N ×1 vector q(n) with
ith element qi(n) and the N×N matrix S(n) with ith column
si(n), (83) becomes, after simple manipulations,

P 1S(n) ≈E{vS(n)}α∗>o (n) diag{q(n)}
+KS(n)S(n)Dα∗o

(n)
(87)

Expected value P 2S(n):
Similar to P 1S(n), we first express P 2S(n) in the form

P 2S(n) = Ev{vS(n)v>S (n)E{sgn{Dx(n) e(n)|vS(n)}}}
(88)

Then, using (39) and (84) we obtain

P 2S(n) ≈KS(n) diag{q(n)}
+ E{vS(n)v>S (n) diag{S>(n)vS(n)}}.

(89)

The (i, j)th element of the expectation in (89) is given by

E{[vS(n)v>S (n)diag{S>(n)v(n)}]ij}

=

N∑
k=1

Skj E{vSk
(n)vSi

(n)vSj
(n)}.

(90)

Evaluation of the third order moment in (90) requires further
approximation, as the distribution of vS(n) is unknown. We
assume that the distribution of v(n) can be approximated by
a Gaussian distribution about its mean value. Then, using the
properties of Gaussian variables [32] and defining the centered
variable v̄p(n) = vp(n)− E{vp(n)} for p = i, j, k, we have

E{vi(n)vj(n)vk(n)}
≈E{v̄i(n)v̄j(n)}E{vk(n)}+ E{v̄i(n)v̄k(n)}E{vj(n)}
+E{v̄j(n)v̄k(n)}E{vi(n)}+ E{vi(n)}E{vj(n)}E{vk(n)}
=Kij(n)E{vk(n)}+Kik(n)E{vj(n)}+Kjk(n)E{vi(n)}
−2E{vi(n)}E{vj(n)}E{vk(n)} (91)

which completes the derivation of (89).
Expected value P 3S :
The (i, j)-th entry of matrix P 3S(n) is given by

[P 3S(n)]ij

=E{sgn{xi(n) e(n)} [α∗o(n)α∗>o (n)]ij sgn{xj(n) e(n)}>}
=E{[α∗o(n)α∗>o (n)]ij sgn{xi(n)xj(n)}} (92)

Using (38), E{sgn{xi(n)xj(n)}} = (2/π) sin−1([Rx]ij/σ
2
x)

and

[P 3S(n)]ij = [α∗o(n)α∗>o (n)]ij
2

π
sin−1

(
[Rx]ij
σ2
x

)
(93)

Finally, expressing the result in the matrix form yields

P 3S(n) =
2

π
(α∗o(n)α∗>o (n)) ◦ T (94)

where the (i, j)th elements of the N × N matrix T is given
by [T]ij = sin−1([Rx]ij/σ

2
x).

10

0 0.02 0.04 0.06 0.08 0.1
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

Equivalent step size η/(Nσ
x
2)

J E
M

SE
(∞

)
 (

dB
)

σξ
2=0

σξ
2=0.0001

σξ
2=0.0003

σξ
2=0.0010

σξ
2=0.0032

(a) Normalized NNLMS algorithm

0 0.02 0.04 0.06 0.08 0.1
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

step size η

J E
M

SE
(∞

)
 (

dB
)

σξ
2=0

σξ
2=0.0001

σξ
2=0.0003

σξ
2=0.0010

σξ
2=0.0032

(b) Exponential NNLMS algorithm

0 0.02 0.04 0.06 0.08 0.1
−45

−40

−35

−30

−25

−20

−15

−10

−5

step size η

J E
M

SE
(∞

)
 (

dB
)

σξ
2=0

σξ
2=0.0001

σξ
2=0.0003

σξ
2=0.0010

σξ
2=0.0032

(c) Sign-Sign NNLMS algorithm

Fig. 2. Steady-State EMSE behavior for the Normalized NNLMS, Exponential NNLMS and Sign-Sign NNLMS algorithms.

Expected values P 4S(n) and P 5S(n):
Using the same reasoning and approximations used to evaluate
P 1S(n) to P 3S(n) yields

P 4S(n) =
2

π
(α∗o(n)E{v>S (n)}) ◦ T (95)

P 5S(n) =
2

π
(KS(n)) ◦ T (96)

The last term K∆S
(n) writes

K∆S(n) =−∆S(n)∆>S (n)−∆S(n)E {vS(n+ 1)}>

− E {vS(n+ 1)}∆>S (n) (97)

VI. STEADY-STATE BEHAVIOR

The recursive transient models derived in Section IV and in
Section V are nonlinear in the weight error correlation matrix.
Hence, it is not possible to derive closed form expressions
for their steady-state values. Nevertheless, these models can
also provide information about the steady-state behavior of
the algorithms in the limit as n→∞. Fig. 2 shows examples
of plots of the steady-state EMSE for the three new algorithms
as functions of both the step size and the nonstationarity
parameter σ2

ξ . These plots were obtained from the theoretical

models for an unknown response of order 10 with samples
drawn from a uniform distribution in [0,1].

VII. SIMULATION RESULTS AND DISCUSSION

We now present simulation examples to illustrate the prop-
erties of the three algorithms and the accuracy of the derived
models. The parameters for these examples were chosen to
illustrate several properties of the three algorithms while
conserving space. Similar results have been obtained using
a variety of parameter sets. For all examples, N = 31. The
unknown stationary system is defined as

α∗ (stat.)
oi =

{
0.9− 0.05 i, i = 0, . . . , 18

−0.01 (i− 18) i = 19, . . . , 31
(98)

For the non-stationary case, we consider an unknown response
defined by

α∗ (nonstat.)
oi (n)

=α∗ (stat.)
oi +

|α∗ (stat.)
oi |
10

sin

(
2π

T
n+ 2π

i− 1

N

)
+ ξi(n)

(99)

where the period T of the deterministic sinusoidal component
was set to 2500. ξ(n) is a zero-mean Gaussian random vector
with correlation matrix σ2

ξI with σ2
ξ = 5 × 10−4. The input

11

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

α
i

(a) stationary case, σ2
x = 1

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

α
i

(b) nonstationary case, σ2
x = 1

Fig. 3. Evolution of the coefficients αi(n) for the normalized NNLMS algorithm in stationary and nonstationary environments for σ2
x = 1. Theoretical

curves are from (32).

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

α
i

(a) stationary case, σ2
x = 0.5

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

α
i

(b) nonstationary case, σ2
x = 0.5

Fig. 4. Evolution of the coefficients αi(n) for the normalized NNLMS algorithm in stationary and nonstationary environments for σ2
x = 0.5. Theoretical

curves are from (32).

signal is a first-order AR process given by x(n) = 0.5x(n−
1) +w(n), with w(n) i.i.d. zero-mean Gaussian with variance
σ2
w, adjusted to obtain the desired input power σ2

x = 1. The
noise z(n) is zero-mean i.i.d. Gaussian with variance σ2

z =
10−2. The adaptive weights in αi(0) were all initialized at
10/N for all realizations. The step size was always set to
η = 0.005 for all but the normalized variant. For the latter
we used η = 0.005Nσ2

x, which leads to an equivalent step
size η̃ = 0.005. Monte Carlo simulations were obtained by
averaging 100 runs.

1) Example 1: Figs. 3 and 4 show the results for the Nor-
malized NNLMS. The parameter ε was set to 0. Blue curves
show simulation results and red curves show the theoretical
predictions from (32). Fig. 3 is for σ2

x = 1 and Fig. 4 is for
σ2
x = 0.5. It can be verified that the model (32) accurately

predicts the algorithm behavior, and that normalization has
made the algorithm performance basically independent of the
input power.

2) Example 2: Fig. 5 illustrates the results for the Ex-
ponential NNLMS algorithm. The parameter (p, q) = (5, 7)
was used. Compared with Fig. 3, these figures clearly show

that the coefficients that tend to zero in steady-state had their
convergence rate significantly improved by the Exponential
NNLMS algorithm. Also, the accuracy of the theoretical model
(35) can be verified.

3) Example 3: Fig. 6 illustrate the result of the Sign-
Sign NNLMS under stationary and nonstationary environment.
These figures illustrate the accuracy of the model (42). It is
also clear that the Sign-Sign NNLMS coefficients converge
much slower than those for the NNLMS algorithm as expected.

A. Second moment behavior

We now illustrate the EMSE behavior of the NNLMS
variants. Again, blue curves were obtained from Monte Carlo
simulation and red curves show the theoretical predictions.

1) Example 4: Fig. 7 illustrates the EMSE behavior of the
Normalized NNLMS algorithm. The accuracy of model (44)
can be easily verified. Two more curves are added to each plot
to illustrate the effect of the random non-stationarity parameter
σ2
ξ . Random perturbations with different variances were also

added to α∗ (stat.)
oi (Fig. 7(a)) and to the nonstationary case

(Fig. 7(b)). The light blue (dash-dot) lines show the theoretical

12

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α
i

iteration

(a) stationary case

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

α
i

(b) nonstationary case

Fig. 5. Evolution of the coefficients αi(n) for the Exponential NNLMS algorithm in stationary and nonstationary environments. Theoretical curves are
from (35).

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

α
i

(a) stationary case

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α
i

iteration

(b) nonstationary case

Fig. 6. Evolution of the coefficients αi(n) for the Sign-Sign NNLMS algorithm in stationary and nonstationary environments. Theoretical curves are from (42).

EMSE for σ2
ξ = 10−3, while the green (dash) lines show the

theoretical EMSE for σ2
ξ = 5× 10−3. These curves illustrate

the expected extra EMSE due to tracking of the random
optimal solution variations. Simulation curves coincide with
the theoretical ones, but are not shown to preserve the visibility
of the other curves.

2) Example 5: Fig. 8 illustrates the EMSE behavior of
the Exponential NNLMS algorithm. The blue and red curves
show again the simulation results and the accurate theoretical
predictions using (64) for (p, q) = (5, 7). The light blue
(dash-dot) and the green (dash) curves show the theoretical
predictions of the EMSE behavior for (p, q) = (3, 5) and
(p, q) = (1, 1) (original NNLMS), respectively. The simulation
results agree with these curves but are not shown for clarity.
These results confirm that the Exponential NNLMS algorithm
accelerates the convergence of the adaptive weights when
compared to NNLMS.

3) Example 6: Fig. 9 illustrates EMSE behavior of the
Sign-Sign NNLMS algorithm. Once more, the red curves and
blue curves illustrate the accuracy of the model (77). The
green (dashed) curves show the performance of the original
NNLMS in the same conditions. These curves illustrate the

slower convergence rate of Sign-Sign NNLMS when com-
pared to NNLMS, the price paid for a reduced computational
complexity.

B. A comparative example

This example compares the performance of the NNLMS al-
gorithm and its variants with that of unconstrained algorithms
in solving the unconstrained solution problem of identifying
an unknown weight vector α∗ with non-negative coefficients.
This is an interesting application, as in this case the uncon-
strained algorithm will converge in the mean to the optimal
solution. Though the problem description may guarantee that
the optimal weights are positive, often in practice one do not
have accurate information about the number of coefficients in
the optimal solution. A common approach is to set the adaptive
filter with a sufficient number of coefficients, usually larger
than the actual unknown number. This examples illustrates the
performance of the different algorithms in this case.

Consider a non-negative unknown optimal solution

α∗i = exp(−0.6 i) (100)

13

0 2000 4000 6000 8000 10000
−15

−10

−5

0

5

10

iteration

J
EMSE

(a) curves for the stationary case and two theoretical curves
with added ξ(n)

0 2000 4000 6000 8000 10000
−10

−5

0

5

10

15

iteration

J
EMSE

(b) nonstationary case

Fig. 7. Evolution of the EMSE for the Normalized NNLMS algorithm in stationary and nonstationary environment. Light blue dash-dot line and green
dashed line show the theoretical results for σ2

ξ = 10−3 and 5× 10−3, respectively.

0 2000 4000 6000 8000 10000
−15

−10

−5

0

5

10

iteration

J
EMSE

(a) stationary case

0 2000 4000 6000 8000 10000
−15

−10

−5

0

5

10

15

iteration

J
EMSE

(b) nonstationary case

Fig. 8. Evolution of the EMSE for the Exponential NNLMS algorithm in stationary and nonstationary environment. Light blue dash-dot line and green
dashed line show the theoretical results for (p, q) = (3, 5) and (p, q) = (1, 1) (original NNLMS), respectively.

0 2000 4000 6000 8000 10000
−15

−10

−5

0

5

10

15

iteration

J
EMSE

(a) stationary case

0 2000 4000 6000 8000 10000
−10

−5

0

5

10

15

iteration

J
EMSE

(b) nonstationary case

Fig. 9. Evolution of the EMSE for the Sign-Sign NNLMS algorithm in stationary and nonstationary environment. Theoretical evolution of original NNLMS
is represented by the green dashed line.

with i = 1, . . . , 10 and adaptive filters with N = 30
coefficients. Five algorithms were tested: NLMS [24], Pro-
jected Gradient NLMS [33], Normalized NNLMS, Exponen-
tial NNLMS and Sign-Sign NNLMS. In Projected Gradient

NLMS, the coefficients which activate the non-negativity
constraints are projected into the feasible region, i.e. set to
0, at each iteration. The input signal was given by x(n) =
0.5x(n − 1) + w(n) with σ2

w = 3/4 so that σ2
x = 1. The

14

0 2500 5000 7500 10000 12500 15000
−30

−25

−20

−15

−10

−5

0

iteration

J
EMSE

Sign−Sign NNLMS

Normalized NNLMS

NLMS

Exponential NNLMS

Projected Graidient NLMS

Fig. 10. EMSE (db) for the four algorithms compared.

initial weights α(0) were drawn from the uniform distribution
U(0, 1). The additive noise z(n) was i.i.d. Gaussian with
σ2
z = 0.1. The step sizes were chosen for each algorithm

by experimentation so that all would reach approximately the
same steady-state EMSE with the value of 2×10−3. The step
sizes were η = 0.035 for both NLMS and Projected Gradient
NLMS, η = 0.8750 for Normalized NNLMS, η = 0.022 for
Exponential NNLMS and η = 0.007 for Sign-Sign NNLMS.
Figure 10 shows the EMSE evolution for the five algorithms
(Monte Carlo simulation averaged over 100 realizations).
Figure 11 shows the estimated weights for a single realization
of the input signal at n = 15000. Although the unconstrained
NLMS algorithm is able to converge to the optimal solution in
the mean sense, it does not provide a good estimation of the
zero-valued coefficients in a single realization. NNLMS-type
algorithms, including the Sign-Sign algorithm (which has not
even converged to the steady-state at n = 15000) do a better
job in determining the support of the actual response.

VIII. CONCLUSION

Many real-life systems require non-negative coefficients
when their physical behavior is parameterized. In such cases,
a non-negativity constraint should be imposed on the pa-
rameters to estimate in order to avoid physically absurd and
uninterpretable results. The Non-Negative Least-Mean-Square
(NNLMS) algorithm has been recently proposed to solve
such a constrained Wiener problem online. In this paper, we
proposed three variants of NNLMS, each addressing a different
issue that may affect NNLMS under given circumstances.
The performances of the Normalized NNLMS, Exponential
NNLMS and Sign-Sign NNLMS algorithms were studied
for nonstationary environments. The optimal unconstrained
solution was modeled by a time-variant mean plus a random
fluctuation. The derived analytical models were shown to
accurately predict both the mean and the mean-square behavior
of the algorithms. Their performances were compared and their
advantages in potential applications discussed. Future research

efforts will further explore these NNLMS variants properties
and apply them in practical situations where efficient adaptive
solutions to non-negative filtering problem are required.

REFERENCES

[1] F. Benvenuto, R. Zanella, L. Zanni, and M. Bertero, “Nonnegative least-
squares image deblurring: improved gradient projection approaches,”
Inverse Problems, vol. 26, no. 1, Feb. 2010.

[2] Y Lin and D. D. Lee, “Bayesian regularization and nonnegative decon-
volution for room impulse response estimation,” IEEE Transactions on
Signal Processing, vol. 54, no. 3, pp. 839–847, Mar. 2006.

[3] A. Cont and S. Dubinov, “Realtime multiple pitch and multiple-
instrument recognition for music signals unsing sparse non-negative
constraints,” in Proc. of the 10th Intl. Conference on Digital Audio
Effects (DAFx-07), Bordeaux, France, Sep. 2007.

[4] D.D. Lee and H.S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, Oct.
1999.

[5] D.D. Lee and H.S. Seung, “Algorithms for non-negative matrix factor-
ization,” Advances in neural information processing systems, vol. 13,
pp. 556–562, Apr. 2001.

[6] J. Mairal, F. Bach, J. Ponce, and G. Saphiro, “Online learning for matrix
factorization and sparse coding,” Journal of Machine Learning Research,
, no. 11, pp. 19–60, Jan. 2010.

[7] A. Cichocki, R. Zdunek, and A.H. Phan, Nonnegative matrix and tensor
factorizations: applications to exploratory multi-way data analysis and
blind source separation, Wiley, 2009.

[8] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J.
Plemmons, “Algorithms and applications for approximate nonnegative
matrix factorization,” Computational Statistics and Data Analysis, vol.
52, no. 1, pp. 155–173, Sep. 2007.

[9] M. D. Plumbley, “Algorithms for nonnegative independent component
analysis,” IEEE Transactions on Neural Networks, vol. 14, no. 3, pp.
534–543, Mar. 2003.

[10] S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret, “Sepa-
ration of non-negative mixture of non-negative sources using a bayesian
approach and MCMC sampling,” IEEE Transactions on Signal Process-
ing, vol. 54, no. 11, pp. 4133–4145, Nov. 2006.

[11] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems,
Society for Industrial and Applied Mathematics, 1995.

[12] R. Bro and S. De Jong, “A fast non-negativity-constrained least squares
algorithm,” Journal of Chemometrics, vol. 11, no. 5, pp. 393–401,
Sep./Oct. 1997.

[13] J. B. Rosen, “The gradient projection method for nonlinear program-
ming. part 1: Linear constraints,” Journal of the Society for Industrial
and Applied Mathematics, vol. 8, no. 1, pp. 181–217, Mar. 1960.

[14] P. H. Calamai and J. J. Moré, “Projected gradient methods for linearly
constrained problems,” Mathematical Programming, vol. 39, no. 1, pp.
93–116, Oct. 1987.

[15] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,”
IMA Journal of Numerical Analysis, vol. 8, no. 1, pp. 141–148, Jan.
1988.

[16] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a
world of projections,” IEEE Signal Processing Magazine, vol. 28, no.
1, pp. 97 –123, Jan. 2011.

[17] C. J. Lin, “Projected gradient methods for nonnegative matrix factor-
ization,” Neural Computation, vol. 19, no. 10, pp. 2756–2779, Oct.
2007.

[18] C. J. Lin, “On the convergence of multiplicative update algorithms
for nonnegative matrix factorization,” IEEE Transactions on Neural
Networks, vol. 18, no. 6, pp. 1589–1596, Nov. 2007.

[19] H. Lantéri, M. Roche, O. Cuevas, and C. Aime, “A general method to
devise maximum-likelihood signal restoration multiplicative algorithms
with non-negativity constraints,” Signal Processing, vol. 81, no. 5, pp.
945–974, May 2001.

[20] J. Chen, C. Richard, J. C. M. Bermudez, and P. Honeine, “Non-negative
least-mean square algorithm,” IEEE Transactions on Signal Processing,
vol. 59, no. 11, pp. 5225–5235, Nov. 2011.

[21] S. Boyd and L. Vandenberghe, Convex Optimization, University Press,
Cambridge, 2004.

[22] “Itu-t recommendation g.726 (former ccltt recommendation g.721),”
1994.

15

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

coefficient index

co
ef

fi
ci

en
t v

al
ue

(a) NLMS algorithm.

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

coefficient index

co
ef

fi
ci

en
t v

al
ue

(b) Projected NLMS algorithm.

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

co
ef

fi
ci

en
t v

al
ue

coefficient index

(c) Normalized NNLMS algorithm.

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

coefficient index

co
ef

fi
ci

en
t v

al
ue

(d) Exponential NNLMS algorithm.

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

coefficient index

co
ef

fi
ci

en
t v

al
ue

(e) Sign-Sign NNLMS algorithm.

Fig. 11. Weights estimated by NLMS, Projected NLMS, Normalized NNLMS, and Exponential NNLMS at n = 15000 for a single realization. Real weights
are marked by ×. The NNLMS variants determine clearly the support of the response.

[23] S. Koike, “Analysis of the sign-sign algorithm based on gaussian
distributed tap weights,” in Proc. of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Seattle, USA,
May 1998.

[24] Ali Sayed, Adaptive Filters, Wiley-Interscience, New York, 2008.
[25] V. Solo and X. Kong, Adaptive Signal Processing Algorithms: Stability

and Performance, Prentice Hall, 1994.
[26] C. Samson and V. U. Reddy, “Fixed point error analysis of the

normalized ladder algorithms,” IEEE Transactions on Acoustics, Speech,
Signal Processing, vol. 31, no. 10, pp. 1177–1191, Oct. 1983.

[27] S. J. M Almeida, J. C. M. Bermudez, and N. J. Bershad, “A statistical
analysis of the affine projection algorithm for unity step size and
autoregressive inputs,” IEEE Transactions on Circuits and Systems Part
I: Fundamental Theory and Applications, vol. 52, no. 7, pp. 1394–1405,
Jul. 2005.

[28] E. Eweda, “Transient and tracking performance bounds of the sign-sign
algorithm,” IEEE Transactions on Signal Processing, vol. 47, no. 8, pp.

2200–2210, Aug. 1999.
[29] S. Dasgupta, CR Johnson Jr, and A.M. Baksho, “Sign-sign LMS

convergence with independent stochastic inputs,” IEEE Transactions
on Information Theory, vol. 36, no. 1, pp. 197–201, Jan. 1990.

[30] R. Price, “A useful theorem for nonlinear devices having gaussian
inputs,” IRE Transactions on Information Theory, vol. 4, no. 2, pp.
69–72, Jun. 1958.

[31] J. Minkoff, “On the unnecessary assumption of statistical independence
between reference signal and filter weights in feedforward adaptive
systems,” IEEE Transactions on Signal Processing, vol. 49, no. 5, pp.
1109, May 2001.

[32] K. S. Miller, Multidimensional Gaussian Distributions, Wiley, New
York, 1964.

[33] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a
world of projections,” IEEE Signal Processing Magazine, vol. 28, no.
1, pp. 97–123, Jan. 2011.

