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ABSTRACT
In this paper we discuss the robustness of the Quasi-Harmonic
model, QHM, previously suggested for speech analysis [1] and
AM-FM decomposition of speech [2]. Assuming a frame by frame
analysis, QHM suggests an iterative estimator for the actual fre-
quencies of the speech components at the center of analysis window.
In this paper, we show that this is a biased estimator and then,
we compute analytically and numerically the bias of the estimator
showing its dependence on the type and length of the analysis win-
dow. Moreover, we analyze the robustness of the QHM estimator in
white Gaussian noise, showing that the suggested iterative estimator
asymptotically attains the corresponding Cramer-Rao lower bound
even in adverse noisy conditions. Examples of synthetic signals are
provided to support our analysis.

Index Terms— Quasi-Harmonic Model, Frequency estimation,
Robustness, Cramer-Rao bound, Speech analysis

1. INTRODUCTION

Speech modeling is always a timely subject in speech processing.
It still has applications in speech coding for wireless and VoIP
communications, while with the advances in statistical paramet-
ric speech synthesis (e.g., HMM-based speech synthesis), speech
modeling shows to be a critical component of these systems for
high-quality speech synthesis. Speech modification and voice con-
version are other areas where speech modeling is very important.
Parameters from suggested speech models can be used in speech
and speaker recognition. Last but not least, speech models that offer
high-resolution time-frequency analysis of speech have applications
in speech analysis and voice function assessment.
Among the most prominent speech models is the sinusoidal model [3]
which has found applications in speech coding and speech modifi-
cations [4]. Other sinusoidal-based speech representations include
the Harmonic plus Noise Model, HNM [5], which has found ap-
plications in speech modifications and speech synthesis [6]. This
two component representation of speech provides a way to treat
differently the harmonic and the noise part of speech, which leads to
high quality prosodic modifications. A drawback of the sinusoidal
models is their sensitivity to the estimation of frequencies. Good es-
timation of frequencies of the speech components results in good to
high-quality speech modeling. To the contrary, if the frequencies are
not well estimated, the quality of modeling is very low, which may
produces artifacts in reconstructed and/or modified speech signal.
In our previous works, we suggested a time-varying sinusoidal
representation which is not very sensitive to frequency mistakes.
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In [1], we revisited the model initially introduced by J. Laroche [7]
showing that this model can accurately follow the time-varying
characteristics of voiced speech, suggesting that voiced speech can
be efficiently modeled as sum of quasi-harmonic components (e.g.,
Quasi-Harmonic Model, QHM). In [2], we showed how QHM can
be used for the accurate estimation of amplitude and frequency
(AM-FM) modulations in speech. Furthermore, in [2], an adaptive
QHM (aQHM) was suggested which provides high-quality speech
reconstruction. Actually, QHM contains a frequency estimator or
corrector, which has the ability to correct frequency mistakes, when
trying to minimize the mean squared error between the model and
the speech signal. The performance of this QHM frequency esti-
mator is very crucial for the effectiveness of the adaptive QHM and
subsequently, for the high-quality speech reconstruction suggested
by aQHM.
In this paper, we discuss the robustness of QHM. More specifically,
it is shown that the QHM frequency estimator is a biased estima-
tor and then, we study analytically the bias of the estimator. In
some cases, an analytic computation of the bias is not possible, and
then the bias is computed numerically. It is shown that the bias
is a function of the type and length of the analysis window. Fre-
quency mismatch intervals are obtained indicating the bandwidth of
frequency mismatch that QHM can efficiently handle. Moreover,
in this paper we study the robustness of QHM estimator in white
Gaussian noise. It is shown that the QHM estimator asymptotically
attains the corresponding Cramer-Rao lower bound (CRLB) even
in adverse noisy conditions (below 0dB). QHM may update its
estimations iteratively. We show that this iterative scheme reduces
the bias of the QHM estimator and increase the robustness of QHM
against noise. We provide examples with synthetic signals in order
to visualize and support the results from our analysis.
The rest of the paper is organized as follows. In Section 2 we will
quickly review the Quasi-Harmonic Model, QHM, and provide de-
tails about the QHM frequency estimator. In Section 3, the bias of
the estimator is computed and the role of the analysis window is
discussed. Section 4 addresses the robustness of the QHM estimator
in white Gaussian noise. In both sections, synthetic examples are
provided to visualize the properties of QHM. Finally, Section 5
concludes the paper.

2. OVERVIEW OF QHM

In the sinusoidal context, speech is assumed to be:

x(t) =

 
KX
k=1

ake
j2πfkt

!
w(t), t = −N, ..., N (1)

where there are K components with complex amplitude ak at fre-
quencies fk. The analysis window is denoted by w(t). Let us as-



sume that fk denote the correct frequencies of the components of
the signal. In sinusoidal modeling, frequencies are estimated (e.g.,
by peak-picking, by considering harmonics of a fundamental fre-
quency, etc.), which will be denoted here by f̂k. Then, we may
write:

fk = f̂k + ηk k = 1, ...,K (2)

If the error, ηk, is high, then the estimation of the complex ampli-
tudes, ak, is severely biased which will create artifacts in the recon-
struction or modification stage of speech using the sinusoidal mod-
els. To cope with this problem, in [1] and [2] we suggested the use of
the Quasi-Harmonic Model, QHM, for the representation of speech:

x(t) =

 
KX
k=1

(ak + tbk)e
j2πf̂kt

!
w(t), t = −N, ..., N (3)

where bk denotes the complex slope of the kth component. In fre-
quency domain, the kth component is written as:

Xk(f) = akW (f − f̂k) + j
bk
2π
W ′(f − f̂k) (4)

where W (f) is the Fourier transform of the analysis window and
W ′(f) is the derivative of W (f) over f . In [1] it was suggested to
project bk to ak:

bk = ρ1,kak + ρ2,kjak (5)

where jak denotes the perpendicular (vector) to ak. Then, the kth
component is written as:

Xk(f) = ak
h
W (f − f̂k)−

ρ2,k

2π
W ′(f − f̂k)

+j
ρ1,k

2π
W ′(f − f̂k)

i (6)

Let us consider the Taylor series expansion of W (f − f̂k −
ρ2,k

2π
):

W (f − f̂k −
ρ2,k

2π
) = W (f − f̂k)−

ρ2,k

2π
W ′(f − f̂k)+

O(ρ2
2,kW

′′(f − f̂k))
(7)

Notice that if the value of term W ′′(f − fk) at fk is small, then for
small values of ρ2,k we can approximate (7) as

W (f − f̂k −
ρ2,k

2π
) ≈W (f − f̂k)−

ρ2,k

2π
W ′(f − f̂k) (8)

Consequently, from (6) it follows that

Xk(f) ≈ ak
h
W (f − f̂k −

ρ2,k

2π
) + j

ρ1,k

2π
W ′(f − f̂k)

i
(9)

which is written in the time domain as

xk(t) ≈ ak
h
ej(2πf̂k+ρ2,k)t + ρ1,kte

j2πf̂kt
i
w(t) (10)

From (10) and (2), we see that ρ2,k/2π can be an estimator of the
frequency error ηk:

η̂k = ρ2,k/2π (11)

while ρ1,k accounts for the normalized amplitude slope of the kth
component. In other words, QHM suggests a frequency correction to
the input frequencies f̂k (or a frequency estimator). This suggestion
is however conditional on the magnitude of ρ2,k and the value of
term W ′′(f) at fk as it was mentioned above (going from (7) to
(8)).
In the rest of the paper, we will discuss the validity of the QHM
frequency estimator and its robustness against noise.

3. VALIDITY OF THE QHM FREQUENCY ESTIMATOR

The QHM frequency estimator suggested in the previous section de-
pends on the window and on the amount of frequency mismatch,
ρ2,k. Let us first address the issue of the analysis window.

3.1. Influence of analysis window

Like in any frequency estimation problem, the analysis window
length should be large enough to achieve high frequency resolution
and robust estimation of the unknown parameters. On the other hand,
since the model suggested in (1) is a stationary model, the analysis
of natural signals like speech, will require the window length to be
small enough in order to accommodate the non-stationary charac-
teristics of the analyzed natural signal. Considering only windows
that satisfy this trade-off, we should select from them those that
offer small value for W ′′(f − fk) at fk. For a rectangular window
it holds that W ′′(f) ∝ T 3 where T is the duration of the analysis
window,w(t). Since the duration of the analysis window determines
its bandwidth, it turns out that the larger the bandwidth the smaller
the value of the term W ′′(f − fk) at fk. Thus, considering analysis
windows that fulfill the tradeoff mentioned above, we will prefer the
one that has the largest bandwidth (e.g., we will prefer the hamming
over the rectangular window).

3.2. Bias computation

Let us next compute the bias of the QHM frequency estimator. For
this, let us assume a mono-component signal:

x(t) = αej(2πf̂t+ηt) (12)

and the corresponding QHM model:

s(t) = (a+ tb)ej(2πf̂t) − T ≤ t ≤ T (13)

Please note that η in (12) denotes an angular frequency and not a
linear frequency as in (2). Assuming a rectangular window, w(t), of
length 2T , the least squares solution for a and b is given by:

a = α
sin(ηT )

ηT

b = α 3j(
sin(ηT )

η2T 3
− cos(ηT )

ηT 2
)

(14)

Then, the coefficient ρ2 in (5) can be shown to be:

ρ2 = 3

„
1

ηT 2
− cot(ηT )

T

«
(15)

or, in other words, QHM suggests that:

η̂ = 3

„
1

ηT 2
− cot(ηT )

T

«
(16)

It is therefore worth studying the bias of this estimator:

Bias(η) = η − η̂ (17)

In Fig. 1(a) the bias is plotted for a rectangular window of length
16ms (T = 8ms) with solid line. For the readability of the paper
we show frequency mismatch (η) in Hz (e.g., η/2π). Although the
computation of bias for the rectangular window is simple, it is a bit
more complicated for other windows like the Hamming window. Al-
ternatively, the bias can be computed numerically. To confirm that



the numerical method provides about the same bias as the analytic
formula, the bias for the rectangular window was also computed nu-
merically and is shown in Fig. 1(a) by a dashed line. Notice the
similarity between the two approaches.
The bandwidth where the bias is considered small (e.g., |Bias(η)| <
|η|) is shown by a bold line. From this figure, it turns out that in the
case of analysis using a rectangular window, QHM can correct fre-
quency mismatches if they are below 45Hz.
The bias for a Hamming window of the same size (16ms) is com-
puted numerically and it is shown in Fig. 1(b). Again, the bandwidth
where the bias is considered small is shown as solid line. It is worth
noting that in the case of the Hamming window, QHM can correct
frequency mismatches that are below 135Hz. This gain factor of 3,
can be explained by the ratio of the bandwidth of the main lobe, B,
of the squared Hamming window (375Hz) over the corresponding
bandwidth of the (squared) rectangular window (125Hz)1. Testing
with a variety of window types it was found that the bias is small
when the frequency mismatch is smaller than one third of the band-
width of the squared analysis window.
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Fig. 1. Upper panel: The bias for a rectangular window computed
analytically (solid line) and numerically (dashed line). Middle panel:
The bias for a Hamming window computed numerically. Lower
panel: Bias using the Hamming window (as in (b)) with two iter-
ations.

3.3. Iterations on QHM

Once an initial estimation of frequency mismatch (η) is obtained
through ρ2, the analysis frequency f̂ can be updated and then the
input signal can be analyzed again by QHM using now the updated
frequency value, i.e., f̂ = f̂+ 1

2π
ρ2. Thus, new estimations of η can

1The squared of the analysis window appears in the least-squares solution
for the estimation of complex amplitudes and slopes in QHM.

be obtained iteratively. In Fig. 1(c) the bias is depicted for the same
Hamming window as in Fig. 1(b), after two iterations. We observe
that the bias is considerably reduced (mainly to zero) if the initial
frequency mismatch is smaller than B/3, where we recall that B
denotes the bandwidth of the squared analysis window.

4. ROBUSTNESS AGAINST NOISE

In this section, the performance of QHM in the case of a signal,
x(t), contaminated by additive noise is assessed. As an example,
we assume a signal with four components contaminated by white
Gaussian noise v(t), as follows:

y(t) =

4X
k=1

ake
j2πfk + v(t) (18)

Table 1, provides information about the frequency and the ampli-
tude of each component. Two closed-space sinusoids and two well-
separated sinusoids are considered. For the analysis of this signal,
a Hamming window of 17ms (T = 8.5ms) length is used, and
a sampling frequency of 8000Hz is considered. The last row of
this table contains the interval of allowed frequency mismatch per
component. The frequency mismatch should be relative to the fre-

Sinusoid 1st 2nd 3rd 4th
Frequency (Hz) 100 200 1000 2000

Amplitude ejπ/10 ejπ/4 ejπ/3 ejπ/5

Freq. Mismatch (Hz) ±10 ±10 ±100 ±100

Table 1. The parameters of the synthetic signal and frequency mis-
match intervals.

quency distance between the components. For the low-frequency
and closely-spaced sinusoids the frequency mismatch is therefore
smaller (±10Hz) than for the high-frequency and well-separated si-
nusoids (±100Hz).
Monte Carlo simulations are used for the assessment of the robust-
ness of the QHM frequency estimator. For each simulation, the fre-
quency mismatch for each component is sampled from a uniform
distribution on the corresponding interval defined in the last row of
Table 1.

Assuming that the power spectral density of the noise is V (f),
then, the local Signal to Noise Ratio, SNR, for the kth sinusoid is
given by [8]

SNRk ≈ 10log10
(2N + 1)|ak|2

V (fk)
(19)

where 2N+1 is the length of the analysis window in samples. Please
note that in order to obtain the SNR value widely used, one must
subtract from the local SNR the quantity 10log10(2N + 1). Since
N = 68 samples (8.5ms), then a local SNR of 20dB corresponds
to −1.36dB SNR, while a local SNR of 30dB, corresponds to a bit
less than 8.63dB ordinary SNR.

The Cramer-Rao lower bound (CRLB) for the frequency of the
kth component is given by [8]

CRLB{fk} =
3V (fk)

|ak|2N(N + 1)(2N + 1)
(20)

while, the CRLB for the amplitude of the kth component is given by

CRLB{ak} =
V (fk)

2N + 1
(21)



The performance of QHM is measured through the mean
squared error for frequencies:

MSE{f̂k} =
1

M

MX
i=1

|f̂k(i)− fk|2 (22)

and for amplitudes:

MSE{âk} =
1

M

MX
i=1

|âk(i)− ak|2 (23)

where M is the number of Monte Carlo simulations. The results
shown in this section are based on M = 10000 Monte Carlo
simulations. For comparison purposes, we include the frequency
and amplitude estimation using the peak-picking after parabolic
interpolation between peaks approach, which is used in the classic
sinusoidal model [3]. This method will be referred to as FFT.
Fig. 2 and Fig. 3 show the MSE for amplitude and frequency for
each component, respectively. For comparison purposes, FFT-based
frequency and amplitude estimation is shown. The corresponding
Cramer-Rao lower bounds are depicted by solid lines. We would
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Fig. 2. MSE of amplitudes as a function of local SNR.
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Fig. 3. MSE of frequencies as a function of local SNR.

like to mention that in this experiment there are two sources of

“noise” for QHM: (i) the additive white Gaussian noise, and (ii)
the frequency mismatch. For the FFT-based approach, however,
only the first type of noise is applied. When no iteration is used,
the frequencies are not updated, thus, the estimation errors for the
frequencies correspond to the initial frequency mismatches. In that
case, the FFT approach outperforms QHM for the two high and
well separated frequency components (two lower panels in Fig. 2
and Fig. 3) where we allowed a maximum mismatch of ±100Hz.
However, when this mismatch is lower (e.g., ±10Hz) as is the case
for the other two of lower frequency components, then QHM out-
performs the FFT-based approach. By contrast, when iterations are
used, the iterative QHM outperforms the FFT-based approach in any
case; only 3 iterations are needed for QHM to asymptotically attain
the CRLB.

5. CONCLUSIONS

In this paper we discussed the robustness of the Quasi-Harmonic
Model, QHM, which was previously suggested for speech analysis
and AM-FM decomposition of speech. The robustness was checked
against frequency mismatches and additive white Gaussian Noise. It
was shown that the iterative QHM can handle large frequency mis-
matches while it is robust against noise. Only few iterations were
required for the QHM-based estimators (frequency and amplitude)
to attain the Cramer-Rao Lower Bound.
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