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Abstract— L-Band observations at the Green Bank Tele-
scope (GBT) and other radio observatories are plagued
with interference from pulsed aviation RADAR transmis-
sions. One remaining problem is that even when strong
direct path pulses and nearby fixed clutter echoes are
removed, there are still weaker aircraft echoes present
which can corrupt the data. In this paper we present
an algorithm which improves aircraft echo blanking by
forming a Kalman filter tracker to follow the path of a
sequence of echoes observed on successive RADAR antenna
sweeps. The tracks developed for each aircraft can be used
to predict regions (in bearing and range) for the next
expected echoes, even before they are detected. The data
in these regions can then be blanked in real time without
waiting for the pulse peak to arrive. Additionally, we
present a new Bayesian algorithm which combines tracker
and pulse detector operations to enable more sensitive
weak pulse acquisition. The developed track information
is used to form a spatial prior probability distribution
for the presence of the next echoes. Regions with higher
probability are processed with a lower detection threshold
to pull out low level pulses without increasing the overall
probability of false alarm detection.

Index Terms— RFI mitigation, Kalman tracking,
Bayesian detection, radio astronomy.

I. INTRODUCTION

RADIO astronomical observation is polluted by a
wide range of radio frequency interference (RFI).

Astronomers and engineers are facing unprecedented
challenges as they attempt to solve the problem of RFI
mitigation.

For example, air surveillance RADAR transmissions
such as those from the ARSR-3 system occur in the
important red shifted Hydrogen line observation fre-
quency range from 960-1400 MHz. These signals may
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dramatically disturb radio astronomical observations, and
have been reported to be a significant problem at the
Green Bank Telescope (GBT) [1] [2] [3], Arecibo [4] [5],
and other observatories . However, the induced pollution
is impulsive and transient, so for radio astronomy ob-
servation, one solution is to “time-blank” by simply not
including RADAR-pulse-corrupted data samples during
spectrum estimation [6] [1]. Time blanking has also
been used to mitigate interference from mobile wireless
communications services [7] [8] [9]. It has also been pro-
posed that once detected, RADAR pulses can be removed
by parametric signal subtraction without discarding data
[5].

Fig. 1. Pulse intensity as a function of delay from the directly
arriving pulse

To illustrate the interference problem addressed in this
paper, we present some 1292 MHz data recorded at
the GBT which clearly shows the interfering RADAR
signal. Some valuable analysis of this real-world data
is provided in [2][3]. Figure 1 shows pulse intensity
as a function of delay relative to the first arriving
pulse. Strong pulses can be seen out to a delay of 135



2

microseconds, most of which are due to reflections from
the hilly terrain around the GBT. These can typically
be excised using time window blanking. The group of
returns at 430 microseconds is from an aircraft, and
blanking it is more problematical since it is not present
at this same location during each successive transmit
antenna sweep.

There are two approaches to time-blanking which
we will call respectively, “time window blanking” and
“detected pulse blanking.” Strong direct-path pulses and
nearby fixed terrain clutter echoes have a predictable
repetition cycle and can be removed by simple time
window blanking. In this approach a fixed set of time
intervals, synchronized to the RADAR pulse repetition
rate, are removed from the data during each transmit
antenna sweep cycle. However, aircraft echoes arrive at
arbitrary times due to aircraft motion, and thus must
be detected before they can be blanked. Detected pulse
blanking is used in this case to remove a window of
data surrounding each detected aircraft echo, including
transmit antenna beampattern sidelobes.

Two difficulties arise with detected pulse blanking:

1) It is very hard to perform blanking in real time be-
cause echoes include wide sidelobe patterns from
the RADAR transmit beampattern (seen Figure 2).
For real-time operation the echo must be antici-
pated and the full beam sidelobe structure must be
removed before and after the echo peak arrives.

2) Echoes weak enough to make detection of even the
peak amplitude difficult may still cause significant
corruption to the data set.

This paper presents improved methods for detected
pulse blanking based on Kalman filter tracking of aircraft
echo motion. The proposed algorithm utilizes time-
history information across multiple past RADAR antenna
sweeps to predict the location of detections in the next
upcoming transmit antenna pass. This prediction is used
either to form a real-time blanking region around an
anticipated echo peak, or to form a prior probability
distribution for pulse arrivals. This prior distribution can
be used in a Bayesian framework to improve weak echo
detection.

We will focus on implementation of the Kalman
tracker and predictive real-time blanking for real
RADAR interference data recorded at the GBT. An
improved Bayesian detection scheme using track-based
echo prior probabilities will be briefly introduced here,
and more fully developed in a following paper.
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Fig. 2. Typical RADAR sweep time frame as seen at the GBT.
Coarse horizontal axis time index corresponds to bearing angle at
transmit antenna. Vertical axis is two-way bistatic pulse echo time
from transmitter to GBT, yielding aircraft range. Each column of
pixels corresponds to a single transmitted pulse. Bright regions up to
120 µs are fixed echoes from nearby mountainous terrain. Note the
wide transmit antenna sidelobe pattern for the echo at 310 µs delay.
Automatically detected aircraft echoes are marked. Echoes detected
using a constant threshold T0 are represented by stars, and notes there
are two weaker echoes are miss-detected in the circle positions, but
were found by the Bayesian detection scheme without increasing false
alarm rate.

II. KALMAN TRACKING FOR INTERFERING

AIRCRAFT ECHOES

This section presents details of the tracker imple-
mentation. A classical Kalman filter approach as often
used for RADAR target following was implemented with
some modifications [10] [11] [12]. State equations for
aircraft dynamics are represented in Cartesian, x − y,
coordinates and are thus non-linearly related to the
natural polar (range and bearing) coordinate system of
the RADAR detector. This mismatch necessitates use of
an extended Kalman filter implementation to liniarize
the observation data points. Also, in the RFI case we
have a “bistatic” RADAR scenario where the transmitter
and receiver are widely separated. The ARSR-3 signals
seen at the GBT originate This geometry complicates
estimating true range and bearing. However, since the
goal is not to precisely localize each aircraft in real-
world coordinates, but to build a predictive tracker in
any suitable coordinate system, we make no attempt to
estimate actual range and bearing relative to the GBT.

The CLEAN algorithm [13] provides isolated detec-
tions in range and bearing, zn = [rn, θn]T , for each
RADAR antenna sweep. These detections serve as inputs
to the tracker. Here n is the antenna sweep, “snapshot”
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index for time tn. Also for notational simplicity we
focus on detections from a single track. The desired
tracker outputs at snapshot n are a prediction point,
(x̂n+1|n, ŷn+1|n), where the next detection is expected,
and shape parameters for an elliptical uncertainty region,
Sn+1, centered on this point (see Figure 3). The size
of Sn+1 depends on the quality of the track, and gets
larger with an increase in observation noise, missed
snapshot detections, or rapid acceleration of the target.
Sn+1 selects the region for predictive real-time blanking,
or the region of increased prior probability for an arriving
echo pulse for the detection step in snapshot n + 1.

A. Dynamic and Observation Models

The tracker employs a position-and-velocity state
space model to describe the dynamics of motion for
the aircraft. Constant velocity motion perturbed by a
correlated zero mean Gaussian random acceleration,
an, is assumed. Measurements are obtained at discrete
sample “snapshot” times, tn, separated by intervals of T
seconds. The dynamic motion model is

xn+1 = Fxn + Gan, where (1)

xn =
[
xn yn ẋn ẏn

]T
,

F =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 ,

G =
[

T 2

2 0 T 0
0 T 2

2 0 T

]T

,

where xn is the state vector for a single aircraft, xn and
ẋn represent position and velocity respectively in the x
direction, F is the state transition matrix, and G is the
input distribution matrix.

The measurement model relates polar observations,
zn, to the state equation coordinates and includes ob-
servation measurement noise:

zn = h(xn) + vn, where (2)

h(xn) =
[√

x2
n + y2

n

tan−1 yn

xn

]
,

vn = [vr(n), vθ(n)]T ,

rn and θn are the measured range and bearing respec-
tively at snapshot n, with corresponding measurement
noise vr(n) and vθ(n).

B. Kalman Prediction Equations

Given echo detections and associated track history up
to snapshot n, the first step in a Kalman filter iteration is

to predict the next state vector and update the prediction
error covariance estimate as follows:

x̂(n + 1|n) = F x̂(n|n), (3)

P (n + 1|n) = FP (n|n)F + GQG, (4)

where

x̂(n|n) = filtered state estimate at tn

given data through tn,

P (n|n) = filtered state error covariance,

x̂(n + 1|n) = predicted state estimate,

P (n + 1|n) = predicted state error covariance,

Q = process noise/acceleration covariance.

x̂(n|n) and P (n|n) are computed using filter equa-
tions, (6)–(8), presented in Section II-C. Note that the
prediction point, (x̂n+1|n, ŷn+1|n), is given by the first
two elements of x̂(n + 1|n). We define the elliptical
region, Sn+1 to be centered on this point and to have
radii rx and ry proportional to

√
P 1,1(n + 1|n) and√

P 2,2(n + 1|n) respectively. Thus the larger the pre-
diction error variance, the larger Sn+1 grows to represent
our uncertainty as to where the next RADAR echo will
be detected.

Figure 3 illustrates this behavior. The plot shows track
evolution for real GBT data over five snapshots for a
dense scene with multiple, overlapping aircraft tracks.
The ellipses show prediction regions, Sn+1 for each es-
tablished track. Note the variety of sizes, corresponding
to variations in track quality. For real-time processing,
these prediction regions would be blanked for the next
expected echoes, even before they are detected. However
for post processing, the prior information represented
by these ellipses can be used for a Bayesian combined
tracking-with-detection algorithm to improve sensitivity
to weak pulses.

Two successive associated pulse detections are re-
quired before a track can be initiated. x̂(0|0) is initialized
with the position of the second detection, and a two
sample velocity estimate computed from the position
difference between the detections.

To find a practical initialization for P (0|0), we ran the
tracker on synthetic detection data which simulated the
aircraft motion seen in the real GBT data. After a large
number of Monte Carlo random trials, P (n|n) converged
on average to P (∞|∞) ≈ (2 × 103)I . This value was
used to initialize P (0|0) when processing real data from
GBT.

In simulation, an = [ax(n), ay(n)]T was generated
by lowpass filtering two mutually independent Gaussian
white noise time sequences (one each for ax(n) and
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Fig. 3. An example of Kalman tracking performance for data
acquired at the GBT. Four aircraft tracks have been automatically
established and plotted, including a pair of crossing tracks. Data from
five snapshots is shown with T ≈ 24s. The final point plotted for each
track in the prediction point, (x̂n+1|n, ŷn+1|n). Prediction regions,
Sn+1, shown by the dashed ellipses vary in size according to track
quality. Note that the center track has a large Sn+1 due to a missed
detection. Predictive real-time blanking is accomplished by excising
the prediction region data.

ax(n)). A filter cutoff of fc = 1
100T produced smooth

simulated aircraft turning maneuvers which were consis-
tent with tracks seen in the real GBT data. The process
covariance is modeled as a constant matrix of the form

Q = E{anaT
n} =

[
σ2

x σ2
xy

σ2
xy σ2

y

]
. (5)

Values of σ2
x = σ2

y = 12.0 and σ2
xy = σ2

yx = 0 were
used in the results described below and were established
by qualitatively matching simulated tracks with the real
GBT data.

C. Kalman Update (Filter) Equations

When a new snapshot of detections from CLEAN is
available, the Kalman update step completes the iteration
begun with equations (3) and (4) as follows:

x̂(n + 1|n + 1) = x̂(n + 1|n) + K(n + 1)

×
[
z(n + 1) − h

(
x̂(n + 1|n)

)]
, (6)

P (n + 1|n + 1) =
[
I − K(n + 1)H(n + 1)

]
× P (n + 1|n), (7)

K(n + 1) = P (n + 1|n)HT (n + 1)

×[H(n + 1)P (n + 1|n)HT (n + 1) + R
]−1

,(8)

where

H(n + 1)
�
=
[

∂h

∂x

]
x=x̂(n+1|n)

(9)

=

(
1√

x2(n + 1|n) + y2(n + 1|n)

)

×
[

x(n + 1|n) y(n + 1|n) 0 0
−y(n + 1|n) x(n + 1|n) 0 0

]
,

and where K(n + 1) is the Kalman gain matrix. Range
and bearing measurement noise are assumed to be mutu-
ally independent, so the measurement error covariance,
R, has form

R =
[
σ2

r 0
0 σ2

θ

]
. (10)

σ2
r is proportional to receiver noise variance and the

square of transmit pulse length. σ2
θ is proportional noise

and the square of transmit antenna angular rotation
rate divided by transmit pulse repetition rate. We have
estimated these parameters empirically for the GBT data
and treat them as constants in the Kalman update.

After computing (6), (7), and (8), index n is incre-
mented to complete the iteration which started with
prediction equations (3) and (4).

D. Track Management

In practical multiple target automatic tracking applica-
tions it is necessary to deal with a number of ambiguities
when interpreting the pulse detection data. We have
developed a set of rule–based procedures (more fully
described in [14]) to address the following issues.

1) Track Creation and Association. For each new
snapshot the CLEAN algorithm produces a set
of detections. Each of these must be classified
as being a newly detected aircraft for which a
track must be created, or as belonging to an
existing track. Detections which lie within a fixed
distance, da, from an existing track’s prediction
point, (x̂n+1|n, ŷn+1|n), are associated with that
track. To avoid ambiguities, detections which sat-
isfy this criterion for two or more distinct tracks
are assigned to the track whose prediction point is
closest.
Two successive associated detections are required
to start a track. New detections which are not
within a distance da of any existing prediction
point are designated candidate starting points. The
track is created if in the succeeding snapshot a
detection within distance dn of the candidate point
is found which is not associated with any existing
track. Since no velocity information is available
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from a single candidate point, it is necessary that
dn >> da. In practice dn is set to be the maximum
distance an aircraft can travel in T seconds.

2) Missed Detections. If in a given snapshot no new
detection is associated with a particular track, it
is assumed that the aircraft is still present, but
that the detection was missed due to random
variation in echo amplitude. Consider missing k
successive detections for a given track. In this
case, Kalman prediction equations (1), (3), and
(4) from prior snapshot, tn−k, are recomputed
as a multi–step prediction by replacing T with
kT . This produces the desired k–step prediction
point (x̂n+1|n−k, ŷn+1|n−k) but the prediction error
covariance, P (n+1|n−k) increases, and the size
of Sn+1 grows as compared to a normal single step
prediction.

3) Track Dropping. A track which has no associated
detections in three successive snapshots is termi-
nated.

4) Track Splitting. If two or more new detections are
associated with a single track then the track is split
into separate tracks for each new detection. These
split tracks have a common history for t ≤ tn−1

but for t ≥ tn are computed as distinct tracks. This
scenario arises when aircraft paths cross or when
a new aircraft detection occurs close to an existing
track prediction point.

III. A BAYESIAN COMBINED KALMAN TRACKER

AND DETECTOR

In a conventional RADAR detector, all range-bearing
bins are assumed to be equally likely to contain an
echo. Detections are made when the magnitude–squared
matched filter output exceeds a predetermined constant
threshold, τ .1 Thresholds are set to yield a specified
probability of false alarm (PFA). For a fixed PFA, the
probability of detection (PD) is a function of the receiver
design and signal statistics, such as signal to noise ratio.

In the context of the Kalman tracker, one need not
assume all bins have the same probability of detection.
The track histories provide prior information which
indicates a higher probability of echoes being detected in
prediction regions, Sn+1. We propose a Bayesian detec-
tion scheme where a spatially dependent prior probability
density function for the presence of an echo, p(x, y),
is computed using the Sn+1 ellipses to designate areas

1The widely used constant false alarm rate (CFAR) detector scales
a constant, c, by a local estimate of noise and clutter standard
deviation in order to form a variable threshold, τ(r, θ). The Bayesian
detection process described here can still be applied to c to achieve
the claimed effect.

Fig. 4. The threshold τ is determined by the prior distribution p(x, y)
of the presence of pulse. τ0 is the constant threshold outside the
elliptical regions, Sn+1. τ(x, y) is at a local minimum corresponding
to each prediction point. The two concavities represent decreased
threshold according to the prior probability inside two different sized
Sn+1.

of increased density. With this approach it is possible
to increase the overall PD without an increase in PFA.
A detailed theoretical development of this detector is
found in [14] and in a forthcoming paper. Here it is
simply noted in summary that the effect of the Bayesian
detector is to make the detection threshold, τ(x, y)
spatially varying, with local minima at the prediction
point centroids of the Sn+1 regions, as illustrated in
Figure 4. Section IV presents a comparison of spectral
density estimates with conventional and the proposed
Bayesian detectors. The proposed scheme produces less
RADAR pulse bias in the spectral estimate.

IV. EXPERIMENTAL RESULTS

A set of real data recorded at the GBT for a 10 MHz
wide band around 1292 MHz was used to test the echo
detection algorithm, tracking, and blanking performance.
A sequence of files representing a continuous block
of 10 minutes of data (50 RADAR antenna rotations)
was recorded in January, 2003. By using the tracker
information, the new Bayesian algorithm is able to detect
some weaker echoes which are miss-detected by the
conventional method. This was accomplished without
increasing the false alarm rate significantly. All blanking
was implemented by “zero-stuffing” [1], that is, placing
zeros into the time samples where RADAR interference
is detected.

The ability to excise RADAR interference was eval-
uated for three different blanking techniques: 1) sim-
ple time window blanking, 2) combined time window
and detected pulse blanking using conventional pulse
detection, and 3) combined time window and detected
pulse blanking using the proposed Bayesian detector.
The Kalman tracker was used for both detected pulse
blanking methods.

Figure 5 shows the unblanked spectrum accumulated
over a 1.2 second window which contained terrain echo
clutter and aircraft echoes. Note the dominant spectral
peak around 5.5 MHz caused by terrain echoes. The
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Fig. 5. The unblanked and time window blanked spectra integrated
over 1.2 seconds while the RADAR beam was sweep overhead at the
GBT.

spectrum with simple time window blanking is also
shown, and at this scale RFI appears to have been
eliminated.

However, at the expanded scale of Figure 6, a dif-
ference is seen between spectral estimates using the
new Bayesian detection as compared with conventional
detection. In this particular data window there were no
strong aircraft echoes so there is little difference between
time window blanking and conventional detected pulse
blanking. There are three weak aircraft echoes which
were detected with the new algorithm, and the resulting
spectrum shows reduced bias near 5.5 MHz correspond-
ing to the RADAR pulse center frequency.

Detected pulse blanking using Kalman filter tracking
techniques has been shown to reduce RFI bias due to
RADAR pulses in GBT observations. Also, the new
Bayesian combined tracking and detection algorithm has
been shown to improve blanking of weak aircraft echo
pulses.
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