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Abstract

This paper introduces a new, adaptive-filter-based controller that shows advantageous properties
from the viewpoint of its communication requirement. The algorithm is called signed-error filtered-x

LMS (SE-FxLMS). Its novelty is characterized by the fact that it makes possible data compression in
the feedback path of adaptive-filter-based control loops in a very simple way. This feature is especially
useful in such closed-loop systems where the feedback signals are transmitted over a low-bandwidth
communication channel. This is a typical case in so-called networked control systems (NCS) where
the communication is carried out over a shared communication channel, e.g., using a wireless sensor
network. The paper introduces an analysis of the algorithm as well.

Keywords: wireless control, networked control systems, signed-error algorithm, adaptive filter based
controller, FxLMS algorithm

1 Introduction

Recently, so-called networked control systems (NCS) have been attracting the attention of several re-
searchers [1, 2]. The most characteristic property of this kind of system is that the feedback signals
are transmitted over a shared communication medium, e.g., Ethernet, Control Area Network (CAN), or
wireless networks (ZigBee, Bluetooth, etc.). The advantage of networked communication is that it does
not require a point-to-point connection between the units, which decreases the cost of the installation of
the system, and the structure can be changed easier than in the case of a fixed connection. The wireless
communication further improves the flexibility.

However, networked communication is not accustomed in traditional closed-loop systems, and this
raises several issues that have not been considered in conventional algorithm design. The difficulties
of networked closed-loop applications originate from the inherent and inevitable problems of networked
communication, e.g., bandwidth limit, data loss, and uncertain data transfer time [1,3,4]. The operation
of a control loop requires real-time feedback from the sensors, therefore these communication problems
have considerable impact on the algorithm design as well.

This paper focuses on the problems of adaptive-filter-based closed-loop systems with a bandwidth-
limited communication channel. The issues of bandwidth-limited closed-loop systems have already been
investigated by several authors. Most significant results can be found, e.g., in [4,5] and references therein.
These papers contain either general results (e.g., minimum data rate theorem) or deal with special control-
theoretic algorithms (e.g., LQG control [6]). Adaptive-filter-based algorithms, however, have not been
investigated yet in the context of bandwidth-limited closed-loop systems. The novelty of this paper
is that it introduces a new, adaptive-filter-based control algorithm that shows advantageous properties
from the viewpoint of its bandwidth requirement. This algorithm is a variant of the well-known FxLMS
algorithm [7–9], and is called the signed-error filtered-x least mean square (SE-FxLMS) algorithm. The
SE-FxLMS algorithm achieves bandwidth reduction in the feedback path from the sensors to the central
controller with the utilization of the signed-error principle [10], which means that the algorithm uses
only the sign of the control error. This method realizes a simple data compression algorithm, and thus
decreases the amount of data to be transmitted over the network. The data compression is especially
important when the sensor data are transmitted over a low-bandwidth communication channel, or when
the system consists of many sensors. The simplicity of the algorithm plays an important role when it
is implemented on resource-constrained sensors, which is a typical case for example in wireless sensor
networks (WSNs).
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The signal compression feature of the signed-error algorithms was experimentally demonstrated in [11],
which introduced a wireless active noise control system where a signed-error resonator-based adaptive
controller was used for noise control. The signal compression has an important role in this application
since it requires real-time transmission of acoustic signals. Unlike the signed-error algorithm introduced
in [11], the SE-FxLMS can also be applied in the case of general stochastic reference and control signals,
furthermore it preserves the capability of signal compression.

Although signed-error algorithms have already been deployed in various applications, and have been
analyzed from several aspects [10,12–17], the analyses in those papers apply to the case when the adaptive
algorithm has unfiltered error feedback. In an adaptive noise control system, however, the feedback signal
passes through the plant to be controlled, which has a dynamic property characterized by a transfer
function. It has already been shown that a dynamic system in the feedback path changes the behavior
of adaptive algorithms [18], which makes necessary the analysis of the signed-error FxLMS algorithm as
well.

The paper is organized as follows. In Section 2, the SE-FxLMS algorithm is introduced. In Section 3,
an upper bound is derived for the mean-absolute error of the algorithm, and the behavior of the adaptive
filter’s weights is investigated in steady state. Section 4 provides some simulation results that prove the
validity of the formulas derived in the paper.

2 Adaptive Algorithm

The FxLMS algorithm [7–9] and its variants are adaptive-filter-based algorithms that strive to minimize
the square of the control error by a gradient-based algorithm. A wide-spread application of the FxLMS
based algorithms is in the field of active noise and vibration control [19]. These applications involve a
large number of free parameters, and FxLMS is capable of controlling systems with complicated transfer
functions (e.g., acoustic and complex mechanical systems).

Fig. 1 shows a block diagram of the SE-FxLMS algorithm, where

y′
n : Output signal of the plant, where subscript n is the time index.

yn : Desired value of the output.

un : Control signal, i.e., the input of the plant.

nn : Noise at the output of the plant.

en : Control error: en = yn − y′
n + nn.

xn : Reference signal, which is assumed to be stationary and ergodic.

xn : Vector form of xn formed as [xn. . .xn−N+1]
T ∈ R

N×1.

wn : Adaptive filter of length N formed as wn = [w0,n . . . wN−1,n]T ∈ R
N×1.

G(z) : Transfer function of the stable, linear plant, which is characterized by its impulse response gn.

Ĝ(z) : Estimate of the plant. In this paper we do not deal with modeling errors in the plant, so
Ĝ(z) = G(z).
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Figure 1: Block diagram of the signed-error FxLMS algorithm
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The adaptive algorithm decreases the error by continuously updating the filter coefficients (wn) using
a gradient-based method. The control signal un is generated from the reference signal xn, so xn and yn

are correlated.
The essential difference between the “conventional” and signed-error adaptive algorithms is that while

the former uses the full error signal in the parameter updating, the latter uses only the sign of the error
signal. Since the FxLMS parameter updating is: wn+1 = wn + µrnen [7,9], the parameter updating rule
of the SE-FxLMS algorithm is:

wn+1 = wn + µrn sign(en), (1)

where µ is a positive convergence parameter, sign(·) stands for the sign function1 , and rn =
[rn . . . rn−N+1]

T ∈ R
N×1 is the filtered reference signal vector:

rn =
∞
∑

k=0

gkxn−k ↔ rn =
∞
∑

k=0

gkxn−k, (2)

where we assume a perfect plant estimate ĝk = gk, which is the impulse response of G(z).
The control signal is obtained by filtering the reference signal with the adaptive filter:

un =
N−1
∑

i=0

wi,nxn−i = xT
nwn. (3)

The step-by-step description of the SE-FxLMS algorithm

loop

Calculate the control signal un from (3), and apply it to the plant.
Calculate the filtered reference rn: (2).
Read the error signal from the sensor, and update the filter wn: (1).

end loop

As it can be noted, the SE-FxLMS updating rule uses only the sign of the error signal, which makes
the computation simpler since multiplication by a sign function only involves manipulation of the sign of
the multiplicand.

The main advantage of the SE-FxLMS algorithm is that it offers a very simple method for data
compression. Since the signal compression truncates the error, the algorithm is easy to implement in
systems with limited resources, e.g., in wireless sensor networks. The drawback of the algorithm is that
the truncation of the error results generally in longer convergence and higher steady-state error compared
to the FxLMS.

The signal compressing feature of the algorithm is especially important in closed-loop systems where a
central signal processing unit (that implements the adaptive algorithm) and the sensor are separated, and
are connected over a low-bandwidth communication channel. This is a very common case in networked
control systems [4, 5]. A simplified block diagram of such a system is shown in Fig. 2. If the sensor
transmits only the sign of the error signal, significant reduction in the amount of data can be achieved.
In practical applications, the case sign(en) = 0 usually has marginal significance, so sign(en) can be
represented by one bit that indicates whether en is positive or negative (+/–). This means that assuming
b bit resolution of the error signal, the data to be transmitted over the network can be reduced to 1/b of
the original amount of data. Thus, a significant reduction is achieved even if the communication overhead
is taken into account. An experimental illustration of the signal compressing feature of the signed-error
algorithms can be found in [11] within the frame of a wireless active noise control system.

sensor
signal

processing
unit+ − − + + − + 

sign(e
n
)

G(z)
u

n

network

Figure 2: Networked closed-loop system equipped with the signed-error algorithm

1sign(x) = +1 if x > 0; sign(x) = −1 if x < 0; sign(x) = 0 if x = 0
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3 Analysis

As (1) shows, the vector wn is updated irrespectively of the magnitude of the error signal, even in the
tight optimal region where the error is small. This causes fluctuation of the parameter values around
the optimum so the error signal cannot be set to zero even in the optimal case. This residual error is
one of the most commonly investigated properties of the signed-error algorithms [13], and is generally
characterized by the mean-absolute error (MAE), which will be derived for the SE-FxLMS in this section.

The model of the impulse response gk, associated with G(z), can be made more realistic if it is assumed
that it includes at least d samples of delay. This is especially true for NCSs where the communication
network introduces transport delay, which is prepended to the impulse response of the physical plant.
This statement is formalized as:

γk = gk+d, (4)

where gk = 0 for k < d, and γk denotes the part of the impulse response that does not include any delay.
The impulse response gk should be identified before starting the operation of the algorithm, and γk can
be extracted from gk by removing the leading zero elements. Fig. 5 shows a real identification example
where the delay and γk are clearly distinguishable.

It is shown in Appendix A that y′
n can be calculated as follows:

y′
n = rT

nwn′ − hn , n′ = n − d, (5)

where

hn = µ

∞
∑

k=1

k
∑

q=1

γkx
T
n′−krn′−q sign(en′−q). (6)

The desired value of the plant output can be modeled as follows [9]:

yn = rT
nwo, (7)

where wo denotes the optimal parameter vector. In the ideal and noiseless case, this signal can be
completely tracked by the algorithm, so that if wn ≡ wo were fixed, the error would become zero, and
y′

n ≡ yn since hn = 0 if the error is zero—see (6). External disturbances and modeling error can be
represented by an additional noise term nn [9]. Modeling error refers to how precisely reality is described
by (7), and can be reduced by increasing N .

The error signal can be expressed from (5) and (7):

en = yn − y′
n + nn = rT

n (wo − wn′) + hn + nn. (8)

One can define the error of the parameter vector:

w̃n = wn − wo. (9)

So (8) can be rewritten:

en = rT
n (wo − wn + wn − wn′) + hn + nn

= −rT
n w̃n + rT

n (wn − wn′) + hn + nn. (10)

The updating rule can also be defined for w̃n according to (1) and (9):

w̃n+1 = w̃n + µrn sign(en). (11)

3.1 Calculation of Mean-Absolute Error

In this subsection, an explicit formula of the MAE is derived, and it is shown to be proportional to the
convergence parameter µ.

Let’s multiply w̃n+1 in (11) by its transpose, which provides the squared Eucledian norm, and using
the fact that rT

n w̃n = w̃T
n rn one obtains:

‖w̃n+1‖
2 = w̃T

n+1w̃n+1 = [w̃n + µrn sign(en)]
T

[w̃n + µrn sign(en)]

= ‖w̃n‖
2 + µ2 sign(en)rT

nrn sign(en) + 2µ sign(en)rT
n w̃n. (12)
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Solving (10) for rT
n w̃n, substituting into (12), and taking the expectation of both sides yields:

E
{

‖w̃n+1‖
2
}

= E
{

‖w̃n‖
2
}

+ µ2
E
{

sign(en)rT
nrn sign(en)

}

+ 2µE
{

sign(en)rT
n (wn − wn′)

}

+ 2µE {sign(en)hn}

+ 2µE {sign(en)nn} − 2µE {sign(en)en} . (13)

In (13), sign(en)en = |en|, and furthermore, sign(en)nn ≤ |nn|, sign(en)hn ≤ |hn|,
sign(en)rT

nrn sign(en) ≤ |rT
nrn|, and sign(en)rT

n (wn−wn′) ≤ |rT
n (wn−wn′)| since sign(en) ∈ {+1, 0,−1}.

Hence (13) can be rewritten:

E
{

‖w̃n+1‖
2
}

≤ E
{

‖w̃n‖
2
}

+ µ2
E
{

|rT
nrn|

}

+ 2µE
{

|rT
n (wn − wn′)|

}

+ 2µE {|hn|}

+ 2µE {|nn|} − 2µE {|en|} . (14)

Upper bounds of the scalar components of (14) are derived in Appendix B, so using (B-8), (B-4) and
(B-5) in (14) yields:

E
{

‖w̃n+1‖
2
}

≤ E
{

‖w̃n‖
2
}

+ µ2Nρw

+2µ2Nρd + 2µ2Nρp + 2µε − 2µE {|en|} , (15)

where
ε

∆
= E {|nn|} (16)

is the absolute-mean value of the noise, and

ρw = R|r| |r|(0), (17a)

ρd =

d
∑

q=1

R|r| |r|(q), (17b)

ρp =

∞
∑

k=1

k
∑

q=1

|γk|R|x| |r|(k − q). (17c)

where R|r| |r|(τ)∆=E {|rt| · |rt+τ |} denotes the correlation function, and it is assumed that xn, rn, and nn

are stationary processes. Iterating (15) backward with (n−1) steps and dividing both sides by 2µ yields:

1

2µ
E
{

‖w̃n+1‖
2
}

≤
1

2µ
E
{

‖w̃1‖
2
}

+ n
1

2
µNρw

+nµNρd + nµNρp + nε −

n
∑

i=1

E {|ei|} . (18)

Since E
{

‖w̃n+1‖
2
}

≥ 0, rearranging (18), and dividing both sides by n gives the MAE:

Ea =
1

n

n
∑

i=1

E {|ei|} ≤
1

2nµ
E
{

‖w̃1‖
2
}

+µN

(

1

2
ρw + ρd + ρp

)

+ ε. (19)

The estimation of the MAE is used in most cases to characterize the steady-state MAE (Ea
ss) of the

signed-error algorithms, i.e., one can calculate an upper bound of the MAE that can be guaranteed. Let
Ēa

ss denote an upper bound on the steady-state error. To calculate Ēa
ss, (19) should be used with n → ∞,

which results in:

Ea
ss = lim

n→∞

1

n

n
∑

i=1

E {|ei|} ≤ µN

(

1

2
ρw + ρd + ρp

)

+ ε = Ēa
ss, (20)

where ρw, ρd, ρp, and ε are determined by the reference signal, the plant G(z), and the noise process, so
these parameters are physically constrained.
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In (20), two design parameters are found: N and µ. Here, N is the length of the adaptive filter, which
should be long enough so that it can track the desired signal yn described by (7). The value of N is often
chosen experimentally or using physical considerations. The other design parameter, µ, is used to set the
steady-state error and the transient response. If an upper bound of the steady-state MAE, Ēa

ss, is given,
rearranging (20) gives

µ =
Ēa

ss − ε

N
(

1
2ρw + ρd + ρp

) . (21)

3.2 Discussion

The terms in (19) can be divided into three groups according to their effect on the MAE. The last term in
(19), ε, is the mean-absolute value of the noise, which cannot be controlled by the convergence parameter,
and sets a lower limit on the MAE.

The first term, 1
2nµ

E
{

‖w̃1‖
2
}

, can be associated with the transient error since in steady state, as

n → ∞, it tends to zero. Since this term is proportional to 1
µ
, the smaller the parameter µ is, the

longer the transient lasts. However, (19) is generally used for estimating the steady-state MAE when
1

2nµ
E
{

‖w̃1‖
2
}

→ 0, because w̃1 (the initial parameter error) is unknown in most cases since that would
require knowledge of the optimal solution.

In (19), µN
(

1
2ρw + ρd + ρp

)

is the part of the MAE that results from the constant weight update, i.e.,
the parameters are changed using the sign of the error, irrespectively of its magnitude. As (19) shows, the
steady-state MAE can be set with µ (apart from the noise floor), so it is an important design parameter.
Small steady-state error requires small µ, which in turn results in a longer transient since the parameters
are modified at each update with small steps. Note that the upper bound on the steady-state MAE given
by (20) is linearly proportional to µ, hence any finite value of µ assures the stability of the algorithm in
the sense that steady-state MAE remains bounded. These important features are also observable in the
case of the simple signed-error LMS algorithm [10].

Comparing the MAE of the SE-FxLMS with that of the basic signed-error LMS algorithm [10], the
essential difference is that the presence of a dynamic system between the output and input of the algorithm
causes an increase in the MAE. This growth is represented by (ρp + ρd) in the MAE (19).

The question may arise as to why is it important to separate the delay from the impulse response
in the calculation of Ea. Actually, it is not necessary to make this separation since it is not required
in the proof that γk does not include any delay. Therefore it is allowable to use d = 0 and gk instead
of γk, however, numerical calculations for several plants and parameter settings show that this kind of
separation of the delay yields a tighter bound on the MAE. This property is important in the design
phase since the convergence parameter µ is often chosen according to the desired MAE: if the upper
bound of the MAE is given, then µ can be calculated according to (21). So, if a tighter bound on MAE
is found, then higher µ can be used, which results in faster convergence.

3.3 Filter Weight Behavior in Steady State

In this subsection, it is shown that in the case of a Gaussian reference signal, the optimal parameter
vector, wo, is the Wiener solution, and the expected distance of the filter weights from the optimum is
bounded in steady state.

The optimal solution of the SE-FxLMS can be traced back to the SE-LMS algorithm. The reason is
that if the filter wn is set permanently to the optimal solution, i.e., wn ≡ wo, the blocks wn and G(z)
in Fig. 1 are interchangeable since they are linear time-invariant systems. This results in a structure
equivalent to that of the SE-LSM whose reference input signal is rn. This structure has already been
investigated in [10], where it is shown that the optimal solution is unique if the autocorrelation matrix
of rn is positive definite. This condition is the same as in the case of the LMS algorithm, however,
the essential difference is that signed-error algorithms minimize the mean-absolute error, E {|en|}, since
d|en|
den

= sign(en). Generally it results in a different optimal solution than that of the LMS algorithm [10],
however, for Gaussian reference signal, the Wiener solution [7] also minimizes the cost function E {|en|},
as well as E

{

e2
n

}

[20].
The parameter error, i.e., the distance of the filter coefficients from the optimum, can be characterized

by the mean-square parameter error norm, E

{

‖w̃n‖
2
}

. We perform the analysis for ergodic and Gaussian

xn and en, which allows us to use the following equality for any Gaussian signal, ξ, [16]:

E
{

ξ2
}

= π
2 E {|ξ|}

2
. (22)
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It is also assumed that the autocorrelation matrix of the filtered reference signal is positive definite.
Furthermore, we use the simplifying notation:

h′
n = rT

n (wn − wn′) + hn, (23)

so rT
n w̃n = h′

n + nn − en according to (10). Left multiplying rT
n w̃n by its transpose and taking the

expectation gives:

E
{

w̃T
n rnrT

n w̃n

}

=

= E
{

h′2
n

}

+ E
{

n2
n

}

+ E
{

e2
n

}

− 2E {ennn} − 2E {enh′
n} + 2E {h′

nnn}

≤ E
{

h′2
n

}

+ E
{

n2
n

}

+ E
{

e2
n

}

+ 2
√

E {e2
n}E {n2

n} + 2
√

E {e2
n}E {h′2

n }

= E
{

h′2
n

}

+ E
{

n2
n

}

+ E
{

e2
n

}

+ 2
√

E {e2
n}
(
√

E {h′2
n } +

√

E {n2
n}
)

(24)

where we have used the Cauchy-Schwarz inequality2. Furthermore h′
n and nn are treated as indepen-

dent, since h′
n contains noise-dependent components only for time indices i < n. Hence E {h′

nnn} =
E {h′

n}E {nn} = E {h′
n} · 0. To calculate an upper bound for the expected value of the squared terms, we

use (22), (23), (B-5), (B-8), and (16):

E
{

h′2
n

}

+ E
{

n2
n

}

≤ π
2 µ2N2 (ρd + ρp)

2
+ π

2 ε2, (25)

2(
√

E {h′2
n } +

√

E {n2
n}) ≤ 2

[√

π
2 µN (ρd + ρp) +

√

π
2 ε
]

, (26)

E
{

e2
n

}

= π
2 E {|en|}

2
≤ π

2 (Ēa
ss)

2. (27)

In (27), E {|en|} has been obtained from (20) for steady state:

Ēa
ss ≥ lim

k→∞

1

k

k
∑

n=1

E {|en|} = E

{

lim
k→∞

1

k

k
∑

n=1

|en|

}

= E {E {|en|}} = E {|en|} ,

(28)

where we have used the fact that limk→∞
1
k

∑k
n=1 ξn yields the expected value, E {ξn}, for ergodic signals.

Now we invoke the independence assumption that is often used in papers dealing with the analysis
of adaptive algorithms, e.g., [7, 14,16]. This assumption is reasonable for µ → 0 [7], however, theoretical
results agree generally well with practice without this constraint as well. The independence assumption
states that w̃n and rn are statistically independent, so:

E
{

w̃T
n rnrT

n w̃n

}

= E
{

w̃T
n E
{

rnrT
n |w̃n

}

w̃n

}

=

= E
{

w̃T
n E
{

rnrT
n

}

w̃n

}

= E
{

w̃T
nRrrw̃n

}

≥ λ1E

{

‖w̃n‖
2
}

(29)

where E {·|w̃n} stands for conditional expectation, and Rrr denotes the autocorrelation matrix of rn with

eigenvalues 0 < λ1 ≤ . . . ≤ λN . To obtain E

{

‖w̃n‖
2
}

, (25), (26), (27), and (29) can be substituted into

(24):

E

{

‖w̃n‖
2
}

≤
π

2λ1

{

µ2N2 (ρd + ρp)
2

+ ε2 +

(Ēa
ss)

2 + 2 [µN (ρd + ρp) + ε] Ēa
ss

}

, (30)

where Ēa
ss is defined in (20). The main conclusion is that the least upper bound on E

{

‖w̃n‖
2
}

is primarily

limited by the noise term, ε, which is a physical constraint. E

{

‖w̃n‖
2
}

can be set arbitrarily close to

this theoretical limit by decreasing µ. In the noiseless case, E

{

‖w̃n‖
2
}

→ 0 if µ → 0, i.e., the filter

parameters can be forced arbitrarily close to the optimal solution. It is also important that, unlike in the
case of FxLMS, the norm of the parameter error remains bounded for any µ.

2for random variables a and b: E {ab} ≤
√

E {a2}E {b2}
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3.4 Calculation of the Correlation Functions

This subsection provides a guide as to how the parameters ρw, ρd, and ρp can be calculated according
to (17). The difficulty is that the calculation of these parameters requires knowledge of the correlation
functions R|r| |r|(q) and R|x| |r|(q), which are nonlinear functions of the reference and filtered-reference
signals x and r, respectively.

Two methods will be shown for calculating the correlation functions. The first one is a numerical
calculation according to (B-1) as follows:

1. Generate a signal sequence xk of length M , which can be generated according to some a priori

knowledges (e.g., distribution, variance). The value of M should be large enough to calculate the
correlation with sufficient accuracy.

2. Generate the filtered reference signal rk: rk = xk ⋆ gk—see (2).

3. Take the absolute value of the sequences xk and rk.

4. The correlation functions can be estimated by numerically evaluating (B-1) as follows [21]:

R|r| |r|(q) ≈
1

M − |q|

M−1
∑

i=0

|ri| · |ri+q|

R|x| |r|(q) ≈
1

M − |q|

M−1
∑

i=0

|xi| · |ri+q|. (31)

The correlation functions can also be calculated analytically in some special cases. Let z and w be
general stochastic signals with Gaussian distribution. If Rzw(τ), i.e., the cross-correlation of z and w is
known, R|z| |w|(τ) can be calculated according to the results in [22,23]:

R|z| |w|(τ) = α
[

Rzw(τ), σzw

]

, (32)

where

σzw =
√

Rz,z(0)Rw,w(0) (33)

and

α[ρ(τ), σ] =
2σ

π

[

ρ(τ)

σ
asin

(

ρ(τ)

σ

)

+

√

1 −

(

ρ(τ)

σ

)2
]

. (34)

Furthermore:

Rxr(q) = Rxx(q) ⋆ gq, (35)

Rrr(q) = Rxx(q) ⋆ gq ⋆ g−q, (36)

where ⋆ denotes the convolution operator. It is assumed that Rxx(q), i.e., the autocorrelation function
of x, is available for the calculations. Hence:

R|x| |r|(q) = α
[

Rxr(q), σxr

]

, (37)

R|r| |r|(q) = α
[

Rrr(q), σrr

]

. (38)

4 Simulation Results

This section presents simulations that reflect the most important properties of the SE-FxLMS. We also
investigate how the steady-state MAE (MAEss) can be predicted by the upper bound given in (20).

In all the simulations: N = 10, ε = 0, and the reference signal, xn, is a white Gaussian random
process with variance Rxx(0) = 1, unless otherwise noted.

First, we demonstrate how the non-unity feedback affects the MAE of the signed-error algorithms.
Fig. 3 shows a simulation with the SE-FxLMS where G(z) = z−50, i.e., a 50-sample delay, and the
step size is: µ = 5 · 10−3. The MAEss obtained from the simulation is 0.13. An upper bound on the
MAEss calculated using the results for the simple SE-LMS is µNRxx(0)/2 = 0.025 [10], which gives an
incorrect bound for the SE-FxLMS algorithm. However, the upper bound given by (20) yields: Ēa

ss = 1.62.
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Figure 3: Convergence of the SE-FxLMS with simple delayed feedback: G(z) = z−50.

This upper bound is not tight, nevertheless it is a valid result. This experiment shows that even a simple
delayed feedback causes an increase of MAEss, which cannot be handled by existing results regarding
signed-error adaptive filters.

The SE-FxLMS algorithm has also been tested with a more complicated G(z), and has been compared
to the FxLMS algorithm as well. Here, we present results for a second-order IIR system with d = 20:

G(z) = 2
z2 + 0.6627z + 0.6214

z2 − 0.3373z + 0.81
z−d. (39)

In Fig. 4, the convergence of the SE-FxLMS (gray) and FxLMS (black) algorithms can be seen. The step
sizes are: µ = 10−3 for the SE-FxLMS and µ = 10−4 for the FxLMS. Comparing the convergence of the
algorithms, one can observe that, unlike the FxLMS, which ensures exponentially-decreasing error, the
MAE of the SE-FxLMS does not decrease below a certain level. The degradation of the residual error
compared to FxLMS is the result of the fact that the magnitude of the error is neglected during the
adaptation, i.e., only the sign of the error is used.
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FxLMS

SE-FxLMS

Figure 4: Convergence of the SE-FxLMS (gray) and the FxLMS (black) algorithms

Table 1 summarizes the results of simulations, showing how the parameters µ, N , ε, and d influence the
MAEss. Each block of the table corresponds to the change of one parameter, while the other parameters
are set to the following default values: µ = 10−3, N = 10, ε = 0, and d = 20. The first row of each
block indicates the investigated parameter and its values used in the simulations. In the first column,
Ea

(S) denotes the MAEss value that is obtained from the simulations. The values Ēa
ss and Ēa+

ss denote the

9



MAEss bounds computed using (20), however, Ēa+
ss was calculated without separating the delay from the

dynamic part of G(z).

Table 1: The effect of µ, N , delay and noise on MAEss; reference signal: white Gaussian process

µ 1.00 · 10−3 1.00 · 10−2 1.00 · 10−1 1.00 · 100

Ea
(S) 6.32 · 10−1 5.91 · 100 6.08 · 101 5.93 · 102

Ēa
ss 5.43 · 100 5.43 · 101 5.43 · 102 5.43 · 103

Ēa+
ss 1.11 · 101 1.11 · 102 1.11 · 103 1.11 · 104

N 5 10 20 50

Ea
(S) 3.48 · 10−1 6.32 · 10−1 1.42 · 100 2.62 · 100

Ēa
ss 2.71 · 100 5.43 · 100 1.09 · 101 2.71 · 101

Ēa+
ss 5.56 · 100 1.11 · 101 2.22 · 101 5.56 · 101

d 1 10 20 50

Ea
(S) 2.93 · 10−1 4.64 · 10−1 6.32 · 10−1 1.36 · 100

Ēa
ss 3.54 · 100 4.44 · 100 5.43 · 100 8.43 · 100

Ēa+
ss 3.83 · 100 7.28 · 100 1.11 · 101 2.26 · 101

ε 5.00 · 10−1 5.00 · 100 5.00 · 101 5.00 · 102

Ea
(S) 7.29 · 10−1 5.06 · 100 5.01 · 101 5.01 · 102

Ēa
ss 5.93 · 100 1.04 · 101 5.54 · 101 5.05 · 102

Ēa+
ss 1.16 · 101 1.61 · 101 6.11 · 101 5.11 · 102

As the results in Table 1. show, (20) correctly predicts the effect of the parameters on the steady-
state error since the increase of each parameter causes an increase of MAEss. The theoretical bounds
are unfortunately pessimistic in the sense that they are approximately one order of magnitude greater
than the simulated values. However, these upper bounds are valid in every case, i.e., the MAEss does not
exceed the calculated upper bound. One can also see that the upper bounds Ēa

ss are tighter than Ēa+
ss ,

where the delay is not separated from the dynamic part of the impulse response.
Finally, we consider an acoustic transfer function, G(z), where impulse response, gn, is plotted in

Fig. 5. The simulation result is shown in Fig. 6. This case simulates an active noise control system,
which is one of the main applications of FxLMS-type algorithms. Fig. 6 also shows how the algorithm
behaves when the parameters of yn are changed during operation, whereby the bandwidth of yn is doubled
at n = 20000 from fs

8 to fs

4 . One can see, that the algorithm achieves similar steady-state error after the
transients: the MAEss is 0.0225 and 0.0219 in the first and second steady-state interval, respectively, and
Ēa

ss = 0.391.
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Figure 5: Impulse response of an acoustic system used in the SE-FxLMS simulation.

10000 20000 30000
−30

−20

−10

0

10

20

30

40

n

|e
n
|

[d
B

]

Figure 6: Convergence of the SE-FxLMS. gn: acoustic system. µ = 2 · 10−2, N = 10, ε = 0. MAEss is
0.0225 and 0.0219 in the first and second steady-state interval, respectively, Ēa

ss = 0.391.
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5 Conclusions

In this paper, an analysis of the signed-error filtered-x least mean square (SE-FxLMS) adaptive controller
was introduced. The steady-state error has been characterized by the mean-absolute error (MAE), for
which an upper bound has been provided. The results point out that the MAE is greater than in the case
of the simple SE-LMS algorithm. It has also been proven that for Gaussian excitation and noise signals
the filter weights converge to the traditional Wiener solution. As the calculation of the upper bound
requires the estimation of some unusual correlation functions, a special guide is also included. Numerical
experiments support the theoretical results, as well. The proposed upper bound is not very tight in some
cases, so its improvement could be subject of further research.

Appendix A Derivation of (5)

From Fig. 1 and (4), the plant output can be obtained by convolution:

y′
n =

∞
∑

k=0

gkun−k =

∞
∑

k=0

γkun′−k, (A-1)

where n′ = n − d. Using the definition of the control signal (3), we can rewrite (A-1) as:

y′
n =

∞
∑

k=0

γkx
T
n′−kwn′−k. (A-2)

Recursive expansion of (1) yields:

wn−k = wn − µ

k
∑

q=1

rn−q sign(en−q), k ≥ 1. (A-3)

Substituting (A-3) for wn′−k into (A-2) and using (6), one obtains:

y′
n =

∞
∑

k=0

γkx
T
n′−k









wn′ − µ

k
∑

q=1
k≥1

rn′−q sign(en′−q)









,

=

(

∞
∑

k=0

γkx
T
n′−k

)

wn′ − hn, (A-4)

where hn is defined in (6). Due to (2) and (4): rn =
∑∞

k=0 gkxn−k =
∑∞

k=0 γkxn′−k, so (5) follows
directly from (A-4).

Appendix B Upper Bounds of Scalar Components in (14)

In the followings, Rzw(τ) denotes the correlation function:

Rzw(τ) = E {ztwt+τ} . (B-1)

Lemma B-1. An upper bound on E
{

|rT
nrn−q|

}

is given by:

E
{

|rT
nrn−q|

}

≤ NR|r| |r|(q). (B-2)

Proof. Since rn = [rn . . . rn−N+1]
T, the vector multiplication in (B-2) can be expanded, hence:

E
{

|rT
nrn−q|

}

= E

{∣

∣

∣

∣

∣

N−1
∑

i=0

rn−irn−q−i

∣

∣

∣

∣

∣

}

≤ E

{

N−1
∑

i=0

|rn−i| · |rn−q−i|

}

=

N−1
∑

i=0

E
{

|rn−q−i| · |rn−i|
}

, (B-3)
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{ }

since | a b | ≤ |a | · |b |. R (q) = E |r | · |r | by definition (B-1), and R (q) =
NR (q), so (B-2) follows from (B-3).

A direct corollary of (B-2) is that for q = 0:

{ }

E |r r | ≤ NR (0) = Nρ . (B-4)

∑ ∑ ∑

l l l l |r| |r| |r| |r|

|r| |r|

T
w

N−1
n−q−i n−i i=0

|r| |r|n n

Lemma B-2. An upper bound on E

{

n

{ }

|r (w − w )| is given by:

d

E |r (w − w )| ≤ µN R (q) = µNρ .
q=1

T
′

∑

′

n n n

}

d
T

n n |r| |r| (B-5)

Proof. w − w can be calculated from (A-3) since n = n − d:

∑

n n−d n−q n−q

Multiplying (B-6) by r and taking the expectation of its absolute value yields:

{ }

∣ ∣

n n n−d n n−q n−q

∑ ∑

≤ µ E r r ≤ µN R (q),

n n

d

T T

∣ ∣

∣ ∣

n n−q

′
′

d

w − w = µ r sign(e ).
q=1

T
n

∣ ∣

{ ( ) }

E |r w − w | = µE r r sign(e )
q=1

d d

T
|r| |r|

q=1 q=1

where (B-2) was used.

∣ ∣

∣ ∣

{ }

∑

∣ ∣

(B-6)

(B-7)

Lemma B-3. An upper bound on E {|h |} is given by:

∞ k

E {|h |} ≤ µN |γ |R (k − q) = µNρ .
q=1

n

∑∑

n k

k=1

|x| |r| p (B-8)

Proof. According to definition (6):

∣

∣

n

k=1

∞ k

≤ µ |γ |E |x r | .
q=1

One can expand the vector multiplication in (B-9):

∣ ∣

{ }

′ ′ ′ ′

i=0

N−1

≤ E |x | · |r | = NR (k − q).
i=0

Substituting (B-10) into (B-9) yields (B-8).

{

E {|h |} = E µ

∑∑

k

k=1

T
n −k n −q

∑

′

∣

∣

n −k−i

∞

∣

{

E |x r | = E x r

{

|x| |r|

∑

k

T
k n −k n −q n −q

T
n −k n −q

N−1

∣ ∣

n −q−i

∑

∣

∑

∣

}

∣

′ ′ ′

q=1

}

′ ′

{ }

∣ ∣

n −k−i n −q−i

}

′

∣

γ x r sign(e )

∣ ∣

∣ ∣

∣

(B-9)

(B-10)
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