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Abstract: This paper focuses on the robust stabilization problem for a class of singular Markovian 

jump systems with uncertain switching probabilities. Based on a slack matrix method on transition 

probabilities, a new criterion for quadratically stochastic admissibility of such an uncertain system is 

established. Then, two new sufficient conditions for the existence of mode-dependent controller are 

given as linear matrix inequalities. Especially, a more practical controller named as mode-independent 

controller is derived by a mode-dependent Lyapunov function. Finally, a numerical example is used to 

demonstrate the effectiveness of the proposed methods. 
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1. INTRODUCTION 

 

Many practical dynamics, e.g., aircraft control, solar 

receiver control, and power systems, experience abrupt 

changes in their structures, whose parameters are caused 

by phenomena such as component failures or repairs. 

This class of system named as Markovian jump systems 

(MJSs) involves both time-evolving and event-driven 

mechanisms, which has the advantage of better 

representing these practical systems with different 

structures due to random abrupt changes. During the past 

decades, a lot of attention has been devoted to the study 

of such system, see e.g., [1-5]. 

On the other hand, singular systems have convenient 

representation in the description of practical systems 

[6,7]. Compared with normal state-space systems, 

singular systems are more complicated, which have three 

types of modes, namely, finite dynamic modes, 

impulsive modes and non-dynamic modes. It is said that 

the latter two kinds of modes are not included in normal 

systems. In recent years, many research topics of 

singular system have been extensively studied, see e.g., 

[8-11]. When singular systems experience abrupt 

changes in their structures, it is natural to model them as 

singular Markovian jump systems (SMJSs) [12,13]. 

Recently, the control and filtering problems of 

continuous-time singular systems were proposed in [14-

18]. 

It is worth pointing out that most of the works done on 

the analysis and synthesis of MJSs have an important 

assumption that the switching probabilities of the 

underlying Markov chain are known precisely. However, 

in practical applications, these values are often needed to 

be measured, and it is very hard and higher cost to obtain 

all the mode transition rates (MTRs) precisely. Instead, 

only the estimations of MTR are obtained. In this case, 

measurement errors also referred to switching probability 

uncertainties are inevitable, and this error can lead to 

instability or degrade the performance of a system such 

as uncertainty in system matrices. So, it is important and 

necessary to consider the robust control and filtering 

problems of MJSs with uncertain transition rate matrix 

(TRM) between the actual and estimated values. A 

model with uncertain switching probabilities has been 

proposed in [19] and [20], and the desired controllers are 

given in terms of a set of coupled algebraic Riccati 

equations. Via considering the inherent probability 

constraints on rows of TRM, improved results on 

stabilization and H
∞
 filtering were presented in [21] and 

[22], which were given in terms of a set of LMIs with 

equation constraints. Because the criteria in references 

[19-22] on normal state-space MJSs with uncertain TRM 

are not LMIs, it is meaningful to study the similar 

problems of MJSs with uncertain switching probabilities 

under an LMI framework. More importantly, because of 

singular matrix and Markov property of SMJSs, it makes 

the system synthesis not easy, and the methods in the 

afore-referred references about normal state-space MJSs 

with uncertain switching cannot be applied to SMJSs 

with uncertain TRM. To the best of our knowledge, the 

stabilization problem of continuous-time SMJSs with 

uncertain switching probability has not been fully 

investigated, which motivates the current research. 

In this paper, the aim is to design a controller coming 

from an LMI condition such that, over all the admissible 

uncertainties in TRM, the closed-loop system is 

quadratically stochastically admissible. The main 
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contributions of this paper are follows: (1) a novel 

condition for quadratically stochastic admissibility of 

SMJSs with uncertain switching is obtained by using a 

slack matrix method on transition probabilities; (2) 

Based on the obtained result, two approaches to a mode-

dependent controller stabilizing an SMJSs with uncertain 

switching are presented in terms of LMIs; (3) A special 

but more practical case is considered, in which a kind of 

controller stabilizing the uncertain SMJS without any 

mode information is proposed. 

 

2. PROBLEM FORMULATION 

 

Consider a class of SMJSs described as 

( ) ( ( )) ( ) ( ( )) ( ),Ex t A t x t B t u tη η= +�  (1) 

where ( ) n

x t ∈� is the state vector, ( ) m

u t ∈� is the 

control input. Matrix n n

E
×

∈�  may be singular, which 

is assumed to be rank rank( ) .E r n= <  ( ( ))A tη  and 

( ( ))B tη  are known matrices of compatible dimensions. 

The mode { ( ), 0}t tη ≥ is a continuous-time Markov 

process taking values in a finite set {1,2,..., }S N=  with 

transition probabilities 

( )
Pr{ ( ) | ( ) }
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i j

t j t i

i j
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0

0, lim ( ( ) ) 0ο
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Δ→

Δ > Δ Δ =  and 0,
ij
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,S∈ ,i j≠  is the transition rate from mode i  at time t 

to mode j  at t + Δ  and 
1,

.

N

ii ij

j j i

π π

= ≠

= − ∑� �  

In this paper, the actual TRM ( )
ij

πΠ� ��  cannot be 

obtained exactly. Instead, we only know that it satisfies 

the following admissible uncertainty 

with , 0, .
ij ij ij

j iπ ε εΠ Π +ΔΠ Δ ≤ ≥ ≠� �  (3) 

In (3), TRM ( )
ij

πΠ �  is the known constant estimation 

of Π�  with 0,
ij

π ≥ j i≠  and 
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π π
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matrix ( ),
ij

πΔΠ Δ�
ij ij ij

π π πΔ −��  denotes the esti-

mated error, and iiπΔ  is also expressed by 

1,

.

N

ii ij

j j i

π π

= ≠

Δ = − Δ∑  It is assumed that ,
ij

πΔ ,j i≠  
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ij ij
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ij ij ij
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Definition 1: The unforced SMJS (1) is said to be 

quadratically stochastically admissible, if there exists Pi, 

such that for all i∈S 

0,
T T

i i
E P P E= ≥  (4) 

†

1

( ) 0
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T T
i i ij j

j

A P E Pπ
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hold over the admissible uncertainty in (2), where 
†( ) .T T T

i i i i i i
A P A P P A+�  

In this paper, a mode-dependent controller (MDC) is 

developed as follows: 

( ) ( ( )) ( ),u t K t x tη=  (6) 

where ( ( ))K tη  is the designed controller gain. If the 

system mode is not available to a controller all time, a 

mode-independent controller (MIC) is constructed as 

( ) ( ),u t Kx t=  (7) 

where K is the controller gain to be determined. 

 

3. MAIN RESULTS 

 

Theorem 1: The unforced SMJS (1) is quadratically 

stochastically admissible, if there exist Pi, 
T

i i
W W=  and 

0,
i
T >  such that the following LMIs hold for all i S∈  
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T T
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Proof: From Definition 1 and taking into account 

condition (3), it is concluded that (5) is equivalent to 

†

1,

1,

( ) ( )

( )( ) 0,

N
T T
i i ij j i ii i ii i
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which could be guaranteed by 

†

1,

( ) ( ) 0,
N

T T
i i ij j i ii i ii i
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A P E P P W Wα π ε
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N

T T
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On the other hand, it is noted that, for any Ti > 0, one has 

2 1

2 1

0.25( )

0.25 .

ii i ii i i i i

ii i i i i

W T WT W

T WT W

π π

ε

−

−
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≤ +
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Taking into account (14), it is concluded that condition 

(10) implies (12). On the other hand, by (3), it is seen 

that (9) implies (13). Thus, one has that (4) and (5) can 

be guaranteed by (8)-(10). This completes the proof. 
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Remark 1: It should be remarked that for normal 

state-space MJSs with uncertain switching probabilities, 

some results such as [19,20] were obtained, which were 

more conservative and were not LMIs. Via considering 

the inherent probability constraint on rows of TRM, 

improved results with less conservatism were proposed 

in [21,22], which were given in terms of a set of LMIs 

with equality constraints. An improved cone complemen-

tarity linearization (CCL) algorithm was given to deal 

with such non-convex conditions. In addition, by the 

given computation method, it is said that the matrix 

coming from the Lyapunov function needs to be 

positive-definite. This condition is always satisfied for 

normal state-space MJSs, but it is not usually true for 

SMJSs. It is because that the corresponding matrix 

resulting from the Lyapunov function [12,13] is 

generally nonsingular. As a result, the afore-mentioned 

method of normal state-space MJSs with uncertain TRM 

is unsuitable to SMJSs with uncertain switching 

probabilities. In this paper, it is seen that for SMJSs with 

uncertain TRM, Theorem 1 develops a condition for 

quadratically stochastic admissibility via using a slack 

variable method on TRM, in which the corresponding 

Lyapunov matrix is not necessary positive-definite. More 

importantly, because of singular matrix and Markov 

property in SMJSs simultaneously, it makes the 

stabilization problem of SMJSs with uncertain switching 

cannot be solved directly and simply by using the 

existing results of normal state-space MJSs with 

uncertain TRM. However, on the basis of the result in 

Theorem 1, it makes the designs of both mode-dependent 

and mode-independent controllers within LMI 

framework stabilizing the underlying system feasible and 

easy. Based on the above facts, it is said that Theorem 1 

is not obtained via combining the existing results directly 

and simply. 

Now we give an LMI condition for MDC (6). 

Theorem 2: Consider the uncertain SMJS (1), there 

exists an MDC (6) such that the resulting closed-loop 

system is quadratically stochastically admissible, if there 

exist ˆ ,
i
P ˆ ,

i
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i
Y

T

i i
W W=  and 0,

i
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following LMIs hold for all i S∈  

ˆ
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T T
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In this case, the gain of controller (6) is given by 

1
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Via the method in [23], it is obtained that 
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where ˆ
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T

i
P  and ˆ

i
Q ≠ 0. Denoting ,

T

i i i i
W X W X=  

pre- and post-multiplying (9) with T

i
X  and Xi, one gets 

that it is equivalent to (15). Let ,

T

i i i i
T X T X=  pre- and 

post-multiplying (10) with diag{ , }
T T

i i
X X  and its 

transpose, we have 

0,
*

i i

i
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where 
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i i i i i i
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ii i ii
T Wε ε−  

1,

( ) .
N

T T
ij i j i i

j j i
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Taking into account (17) and (20), it is concluded that 

(16) implies (21). This completes the proof. 

Remark 2: It is worth mentioning that, compared with 

the similar existing results on both normal state-space 

and singular MJSs, Theorem 2 has the following 

advantages: 1) From the method in [21] which is similar 

to that in [22], it is seen that if one wants to discuss the 

stabilization problem of SMJSs with uncertain switching 

via the afore-referred algorithm, another assumption on 

matrix Pi which is positive-definite should be satisfied 

firstly. Moreover, even if the additional assumption holds, 

the corresponding stabilization problem cannot be solved 

completely. That is because some new problems emerge 

due to singular matrix E, which must be also dealt with. 

Thus, it is concluded that the existing methods to deal 

with the TRM of normal state-space MJSs cannot be 

applicable to SMJSs with uncertain switching; 2) When 

the TRM is assumed to be known exactly, some 

stabilization results for the underlying SMJSs in terms of 

LMIs were reported in [15-17]. From these criteria, it is 

seen that the equation condition such as (4) was removed 
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successfully by using the method in [23]. Unfortunately, 

if there are admissible uncertainties in TRM, the desired 

controller within LMI framework cannot be constructed 

by using contragradient transformation directly such as 

in [15-17]. The reason is that there are some terms 

having strong correlations among the uncertain transition 

rates, singular matrix and Lyapunov matrices which 

make the LMI condition of a controller developed by the 

methods in the afore-said references impossible. 

Recently, the robust stabilization problem of SMJSs with 

full or partial knowledge of TRM was studied in [14], 

whose uncertainties were in system matrix instead of 

TRM. Moreover, it is also seen that the algorithm dealing 

with term ET
Pi is not suitable to the case of uncertain 

TRM, which has more conservatism and where the 

equation constraint such as (4) is also included in the 

established results. 

It is seen that the implement of controller (6) requires 

the system mode available online. However, in many 

practical applications, the data is transmitted through 

unreliable networks and suffers packet dropout. As a 

result, controller (6) is too ideal. Instead, another kind of 

controller (7) named to be mode-independent can be 

constructed to deal with the above case. In order to 

obtain a common K from Theorem 2 directly, Xi in (15)-

(17) should be a common matrix. That means the 

corresponding Lyapunov function should be mode-

independent, which is more conservative than mode-

dependent ones. In the next, a sufficient condition is 

given to separate Xi from Ai, which makes the 

requirements of mode-independent controller and mode-

dependent Lyapunov function satisfied simultaneously. 

Theorem 3: Consider the uncertain SMJS (1), there 

exists an MDC (6) such that the resulting closed-loop 

system is quadratically stochastically admissible, if there 

exist ˆ ,
i
P ˆ ,

i
Q ,

i
G ,

i
Y

T

i i
W W=  and 0,

i
T >  such that 

(15) and the following LMIs hold for all i∈S 
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where 
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2
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Proof: Pre- and post-multiplying (22) with the follow-

ing matrix 
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and its transpose, respectively. It is directly obtained that 

(22) implies (16). This completes the proof. 

If the conditions in Theorem 3 with Gi = G are 

satisfied, a corollary is obtained directly. 

Corollary 1: Consider the uncertain SMJS (1), there 

exists an MIC (7) such that the resulting closed-loop 

system is quadratically stochastically admissible, if there 

exist ˆ ,
i
P ˆ ,

i
Q ,G ,Y

T

i i
W W=  and 0,

i
T >  such that 

(15) and the following LMIs hold for all i∈S 

1 2 2

†

3
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i
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where 

†
1 ( )
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T

ii i ii i ii i
T W EPEε ε α− +  

2

T T

i i i i
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In this case, the gain of controller (7) is given by 

1
K YG

−

= . (26) 

 

4. NUMERICAL EXAMPLES 

 

Example 1: Consider an SMJS of form (1) is obtained 

by 

1 1

0.2 1 0.3 1.5

2 1.2 6 , 0.4 ,

2 1 1 1

A B

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

1 1

0.2 1.3 0.3 1

3 1.2 1 , 0 .

1 2 1 2

A B

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

The singular matrix is given as 

1 0 0

0 1 0 .

0 0 0

E

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The transition rate are given as 
11

π =� –5 and 
22

7,π = −�  

where the uncertainties of TRM Π  are such that 

12 12 12
0.5π ε πΔ ≤ =  and 

21 21 21
0.5π ε πΔ ≤ =  respec-

tively. Under the initial condition 
0

[1 1 0.6] ,
T

x = −  

the state of the open-loop system with uncertain TRM is 

illustrated in Fig. 1, which is not stable. When its system 

mode is always available to controller, it is known that 

the methods in [15-17] are not applied to such an SMJS 

with uncertain TRM. That is because the results on 

continuous-time SMJSs depended on the TRM known 

exactly. Though [14] considered the stabilization 

problem of SMJSs with partial knowledge TRM, it is 

seen that it is different to the problem presented in this 

paper, and the given method is not suitable to the case of 

SMJSs with uncertain switching. Instead, by Theorem 2, 

an MDC can be computed as 
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Fig. 1. The simulation of open-loop system. 

 

 

Fig. 2. The simulations of closed-loop system by MDC 

and MIC. 

 

 

Fig. 3. The simulation of system mode with a percent. 

 

1
[ 0.3396 1.2769 1.1206]K = − − , 

2
[ 0.9982 0.6619 1.2338]K = − . 

After applying the desired controller to the above system, 

the state response of the resulting closed-loop system is 

shown in Fig. 2(a). It is seen that it is stable over all the 

admissible uncertainties. On the other hand, if its system 

mode is not always available to controller, it means the 

controller mode is accessible with a percent. For this 

example, the system mode received by a controller is 

only about 30%, and Fig. 3 gives the corresponding 

simulation, in which * denotes the current mode 

inaccessible. In this case, an MDC will fail to stabilize 

the corresponding system, since its system mode is not 

always available. However, based on Corollary 1, an 

MIC can be designed as 

[ 0.3346 0.4602 0.7148]K = − . 

The response of the resulting closed-loop system is 

simulated in Fig. 2(b), which shows that the constructed 

controller can stabilize the system over all the admissible 

uncertainties, even if the system mode is unavailable. 

 

5. CONCLUSION 

 

In this paper, the stabilization problem for a class of 

SMJSs with uncertain switching probabilities is 

considered by using a slack variable method on TRM. 

Based on this, two sufficient existence conditions of 

MDC are proposed in terms of LMIs, which could be 

solved easily and directly. Moreover, the obtained result 

is further applied to a practical case that the system mode 

is not necessary to the controller. Finally, the utility of 

the developed theory is illustrated by a numerical 

example. 
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