
Scientia Iranica D (2012) 19 (3), 795–805

Sharif University of Technology

Scientia Iranica
Transactions D: Computer Science & Engineering and Electrical Engineering

www.sciencedirect.com

Application of Chebyshev polynomials to derive efficient algorithms
for the solution of optimal control problems
B. Kafash a,∗, A. Delavarkhalafi a, S.M. Karbassi b
a Faculty of Mathematics, Yazd University, Yazd, P.O. Box 89197/741, Iran
b Faculty of Advanced Education, Islamic Azad University of Yazd, Yazd Branch, Yazd, P.O. Box 89195/155, Iran

Received 5 November 2010; revised 5 May 2011; accepted 18 June 2011

KEYWORDS
Chebyshev polynomials;
Optimal control problems;
State parameterization;
Weierstrass approximation
theorem;

Duffing oscillator problem.

Abstract In this paper, new and efficient algorithms for solving optimal control problems and the
controlled Duffing oscillator are presented. The solution is based on state parameterization, such that
the state variable can be considered as a linear combination of Chebyshev polynomials with unknown
coefficients. First, an optimization problem in (n+1)-dimensional space is changed into a one-dimensional
optimization problem,which can then be solved easily. By these algorithms, the control and state variables
can be approximated as a function of time. Convergence of the algorithms is proved and some illustrative
examples are presented to show the efficiency and reliability of the presented method.
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1. Introduction

Optimal control is a mathematically challenging and prac-
tically significant discipline. It has many successful practical
applications in a wide range of disciplines, such as engineer-
ing, economics and finance, to name just a few. In recent years,
considerable attention has been given to the use of spectral
methods for the solution of nonlinear physical problems. The
controlled Duffing oscillator describes many such oscillatory
phenomena in nonlinear engineering systems. The controlled
Duffing oscillator, in particular, has received a considerable
amount of attention in recent decades.

In practice, many optimal control problems are subject to
constraints in state and/or control variables. In direct meth-
ods, the optimal solution is obtained by direct minimization
of the performance index, subject to constraints. Dynamic op-
timization programming and Pontryagin’s maximum principle
method [1–5] represent the best known methods for solving
optimal control problems. In [6], the computation of switch-
ing surfaces in general time optimal control problems, using a
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polynomial equations system, was considered. In [7], a general
framework is constructed, upon which an explicit parametric
formula can be derived for state feedback controllers, contain-
ing all possible combinations of parameter. As analytical solu-
tions for problems of optimal control are not always available,
finding an approximate solution is at least the most logical way
to solve them. The study of numerical methods has provided an
attractive field for researchers of mathematical sciences, which
has given rise to the appearance of different numerical com-
putational methods and efficient algorithms in solving optimal
control problems (for details see [8–14]). In particular, the con-
trol parametrization technique is used in [9,15], while the Con-
trol Parametrization Enhancing Technique (CPET) is introduced
in [15,16]. A class of constrained optimal control problems sub-
ject to canonical constraints was considered in [17]. Vlassen-
broec presented a numerical technique for solving non-linear
constrained optimal control problems [18]. Jaddupresented nu-
merical methods to solve unconstrained and constrained opti-
mal control problems [19] and later, extended his ideas to solve
nonlinear optimal control problems with terminal state con-
straints, control inequality constraints and simple bounds on
state variables [20]. Lee et al. have solved the optimal control
and optimal parameter selection problems of a rotating flexi-
ble beam fully covered with Active Constrained Layer Damp-
ing (ACLD) treatment with a computational approach [21]. Van
Dooren and Vlassenbroech [22] introduced a direct method
for the controlled Duffing oscillator. El-Gindy [23] presented
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an alternative technique for solving controlled Duffing oscil-
lator problems, which is based on the El-Gendi method [24].
This method starts with a Chebyshev approximation for the
highest order derivative, and generates approximations to the
lower order derivatives through successive integrations. In [25],
a numerical technique is presented for solving the controlled
Duffing oscillator in which the control and state variables are
approximated by the Chebyshev series.

State parametrization converts the problem to a non-linear
optimization problem and finds (n + 1) unknown polynomial
coefficients of degree, at most, n, in the form of

n
k=0 akt

k

for an optimal solution [13,26]. One may use, for example,
geometric or exponential combinations. There is an optimal
control software package, MISER3, which has been developed
by Jennings et al. [27,28] to solve optimal control problems.
MISER3 has been used in solving various kinds of control
problem with different aspects [29].

In this paper, the algorithm presented in [13] is modified,
and an efficient iterative algorithm is obtained. In this way,
only one unknown coefficient is calculated for finding a suitable
approximation; further iterations leads to favorable accuracy.
The same computational technique can be extended to solve
the controlled Duffing oscillator. In addition, by the proposed
algorithm, the control and state variables can be approximated
as a function of time.

2. Chebyshev polynomials

In this section, Chebyshev polynomials, which are used in
the next sections, are reviewed briefly [30,31].

Definition 1. The Chebyshev polynomial, Tn(t), of the first kind
is a polynomial in t of degree n defined by the relationship:

Tn(t) = cos(n cos−1 t), (1)

where:

t = cos θ. (2)

If the range of variable t is the interval, [−1, 1], then the range
of the corresponding variable, θ , can be taken as [0, π]. These
ranges are traversed in opposite directions, since t = −1
corresponds to θ = π , and t = 1 corresponds to θ = 0. It
is well known (as a consequence of de Moivre’s Theorem) that
cos nθ is a polynomial of degree n in cos θ , and, indeed, one is
familiar with the elementary formulae:

cos 0θ = 1, cos 1θ = cos θ,

cos 2θ = 2 cos2 θ − 1,
cos 3θ = 4 cos3 θ − 3 cos θ,

cos 4θ = 8 cos4 θ − 8 cos2 θ + 1, . . . . (3)

It can be immediately deduced from Eq. (2) that the first few
Chebyshev polynomials are:

T0(t) = 1, T1(t) = t, T2(t) = 2t2 − 1,

T3(t) = 4t3 − 3t, T4(t) = 8t4 − 8t2 + 1, . . . . (4)

In practice, it is neither convenient nor efficient to work out
each Tn(t) from the first principles. Rather, by combining the
trigonometric identity:

cos(n + 1)θ + cos(n − 1)θ = 2 cos θ cos nθ, (5)
with Eqs. (1), (2) and (4), clearly the fundamental recurrence
relationship can be obtained as:
T0(t) = 1, T1(t) = t,
Tn+1(t) = 2tTn(t) − Tn−1(t), n = 1, 2, 3, . . . , (6)

which generates all Chebyshev polynomials, {Tn(t)}, efficiently.

Lemma 1. In Chebyshev polynomials, all even powers of t are
even functions, and all odd powers of t are odd functions.

Proof. Eqs. (4) suggest that Tn(t) is an even or odd function
involving only even or odd powers of t , according to n being
even or odd. This may be deduced rigorously from Relations 6
by induction. �

Lemma 2. It can be inferred that:

Tn(1)Tn+1(−1) − Tn(−1)Tn+1(1) ≠ 0. (7)

This is later used in Algorithm 2.

Proof. For the boundary points, we have θ = π and θ = 0, so
that corresponding values of Tn(t) in these points are (−1)n and
1, respectively. From the above explanations and Lemma 1:

If n is even, then:

Tn(1)Tn+1(−1) − Tn(−1)Tn+1(1) = −Tn(1)Tn+1(1)
−Tn(1)Tn+1(1) = −2 ≠ 0,

and if n is odd, then:

Tn(1)Tn+1(−1) − Tn(−1)Tn+1(1) = Tn(1)Tn+1(1)
+Tn(1)Tn+1(1) = 2 ≠ 0. �

Function f (t) can be approximated by a Chebyshev series of
length N as follows [19]:

f (t) =
a0
2

+

N
i=1

aiTi(t),

where:

aj =
2
K

N
i=1

f (cos(θj)) cos(jθi), j = 0, 1, . . . ,N,

where:

θj =
2i − 1
2K

π, i = 1, 2, . . . , K ,

and K > N .
The derivative of f (t) with respect to t is given by:

ḟ (t) =
b0
2

+

N−1
i=1

biTi(t),

where:

bN−1 = 2NaN ,

bN−2 = 2(N − 1)aN−1,

br−1 = br+1 + 2rar , r = 1, 2, . . . ,N − 2.

Chebyshev polynomials can also be expressed in powers of t ,
and vice versa. For example, the powers of t can be expressed
in terms of the Chebyshev polynomials of degrees up to n as
below [31]:

tn = 21−n
[n/2]
k=0


n
k


Tn−2k(t), (8)
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where:
n
k


=

n!
k!(n − k)!

, (9)

and the dash (


′
) denotes that the kth term in the summation

is to be halved if n is even and k =
n
2 .

For Tn(t), in terms of tn, tn−2, tn−4, . . . , the relevant result
is obtained in the form [32]:

Tn(t) =

[n/2]
k=0


(−1)k

[n/2]
j=k


n
2j

 
j
k


tn−2k. (10)

However, a simpler formula is given, for example, by Clenshaw
(1962) and Snyder (1966), in the form [31]:

Tn(t) =

[n/2]
k=0

c(n)
k tn−2k, (11)

where:

c(n)
k = (−1)k2n−2k−1


2


n − k
k


−


n − k − 1

k


,

(2k < n),
and:
c(2k)
k = (−1)k, (k ≥ 0).
Also, the exact relation between the Chebyshev function and its
derivatives is expressed as in [25]:

Tn(x) =

k
m=0

(−1)m

k
m


2kχm

T (k)
n+k−2m(x), n > k, (12)

where:

χm =

k
j=0

j≠k=m

(n + k − m − j).

Corollary 1. Let Q ′
n be the class of combinations of Chebyshev

polynomials of degrees up to n, then:

Q /

n+1 ⊇ Q ′

n.

Proof. If Q ′
n is the class of Chebyshev polynomials in t of degree

n, then the result follows from Eqs. (8) to (11) immediately. �

3. Mathematical formulation

Consider the process described by the following system
of nonlinear differential equations on the fixed time interval
[t0, t1]:

U(τ ) = f (τ , X(τ ), Ẋ(τ )), (13)
with initial conditions:

X(t0) = x0, X(t1) = x1, (14)
where X(·) : [t0, t1] → R is the state variable, U(·) : [t0, t1]
→ R is the control variable, and f is a real-valued continuously
differentiable function. The problem of optimal control is then
to find control U(·), transferring System 13 from position
X(t0) = x0 to position X(t1) = x1 within the time (t1 − t0),
and yielding the optimum performance index, J , which is given
by:

J =

 t1

t0
L(τ , X(τ ),U(τ ))dτ . (15)
We always assume that there are admissible controls that pass
through (t0, x0) and (t1, x1). In this set of controls, we search
for the control variable which minimizes J and call it optimal
control. If t0 ≠ −1 or t1 ≠ 1, then for using Chebyshev
polynomials, we introduce the transformation:

τ =
t1 − t0

2
t +

t1 + t0
2

. (16)

This change in variable produces t ∈ [−1, 1], corresponding
to τ ∈ [t0, t1]. Using Eq. (16), the optimal control problem in
Eqs. (13)–(15) can be obtained as follows.
The optimal control:

u(t) = f

t1 − t0

2
t +

t1 + t0
2

, x(t), ẋ(t)


, (17)

and its corresponding trajectory x(t) with initial conditions:

x(−1) = x0, x(1) = x1, (18)

minimizes:

J(x) =
t1 − t0

2

 1

−1
L

t1 − t0

2
t +

t1 + t0
2

, x(t), u(t)

dt. (19)

4. State parametrization

Let Q ⊂ C1([t0, t1]) consisting of all functions passing
through (t0, x0) and (t1, x1). From Eqs. (13) and (15), the
performance index may be considered as a function of X(·);
J(X(·)). Then, the above optimal control problem may be
interpreted as a minimization of J on set Q .

Let Qn be a subset of Q , consisting of all polynomials of
degree, at most, n, as:

Xn(τ ) =

n
k=0

akτ k, (20)

where n = 1, 2, . . ..
Now, consider the minimization of J on Qn, with {ak}nk=0

as unknowns. This is an optimization problem in (n + 1)-
dimensional space and J(Xn) may be considered as J(a0, a1,
. . . , an).

Theorem 1 (Weierstrass Approximation Theorem (1885)). Let
f ∈ C([a, b], R). Then, there is a sequence of polynomials, Pn(x),
that converges uniformly to f (x) on [a, b].

Proof. See [33]. �

Theorem 2. If αn = infQn J , for n = 1, 2, . . . , then
limn→∞ αn = α, where α = infQ J .

Proof. Let α̂ > J(X(·)) be the limit of non-increasing sequence
{αn}. If α̂ > α, then ε =

α̂−α
2 > 0, so;

∃X(·) ∈ Q , J(X(·)) < ε + α =
α̂ − α

2
+ α =

α̂ + α

2
< α̂,

such that α̂ > J(X(·)), which contradicts the continuity of J and
Theorem 1. �

The above result is summarized in the following algorithm.

Algorithm 1. Here, the algorithm in [13] is generalized in order
to consider τ ∈ [t0, t1].
Object: To obtain an optimal value for J(·).
Step 1. Choose an ε > 0.
Step 2. Let n = 1, X1(τ ) = x0+(x1−x0) τ−t0

t1−t0
andα1 = J(X1(·)).
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Step 3. Let n → n + 1 and find αn = infQn J .
Step 4. If |αn−1 −αn| < ε then stop, otherwise return to Step 3.

In the above algorithm, the solution of an optimization problem
in all iterations is required, and the solution of the iteration is
not used to construct the next one.

This seems too expensive from a computational viewpoint.
In the next section, this algorithm is improved.

5. Modified algorithm

In this section, we use a state parametrization method to
derive a robust method for solving optimal control problems,
numerically. In comparison with other numerical methods, the
number of unknowns of the proposedmethod is lower than that
in control state parametrization. In state parametrization, the
solution of the approximation is considered as Eq. (20), using
(n + 1) terms of 1, τ , τ 2, . . . , τ n as a basis for Qn. This is a poor
choice for numerical calculations, but Chebyshev polynomials
operate as a good basis. Algorithm 1 yields a solution of the
optimization problem in all iterations, but the solution of each
step is obtained independently from previous steps, so it is
costly. Algorithm 1 is made more efficient in this section.

By using Transformation 16 in the optimal control problem,
Eqs. (13)–(15) are transformed to the optimal control problems
in Eqs. (17)–(19). First, we consider this approximation for x(·),
which in terms of Ti(t)’s are the Chebyshev polynomials:

x1(t) =

2
i=0

aiTi(t). (21)

By using boundary conditions, we have:

a0 =
x1 + x0

2
− a2, a1 = x1 −

x1 + x0

2
. (22)

Substituting Relations 22 into Eq. (21) yields:

x1(t) = a2T2(t) +


x1 −

x1 + x0

2


T1(t)

+


x1 + x0

2
− a2


T0(t), (23)

and then u(t) can be obtained from Eq. (17). Now, we obtain J
as a function of a2 by calculating:

t1 − t0
2

 1

−1
L

t1 − t0

2
t +

t1 + t0
2

, x(t), u(t)

dt,

and refer to it as J(a2). Let a∗ be the value which minimizes
J(a2), then J(a∗) is the solution of the optimal control problem in
Eqs. (17)–(19). Also, the state and control variables can be
calculated from a∗ approximately.

In the next step, x2(t) is approximated as below:

x2(t) = x1(t) +

3
i=1

aiTi(t). (24)

Then, using boundary conditions, we have:

a1 = −a3, a2 = 0. (25)

Substituting Relations 25 into Eq. (24) yields:

x2(t) = x1(t) + a3T3(t) − a3T1(t), (26)

and then, u(t) can be obtained from Eq. (17). Now, we obtain J
as a function of a3 by calculating:

t1 − t0
2

 1

−1
L

t1 − t0

2
t +

t1 + t0
2

, x(t), u(t)

dt,
and refer to it as J(a3). If a∗ is the value that minimizes J(a3),
then J(a∗) is the solution of the optimal control problem in
Eqs. (17)–(19). Also, we can calculate state and control variables
from a∗ approximately.

By continuing this procedure, we obtain a favorable
accuracy, for example in the (n + 1)th step. The approximate
solution is given by:

xn+1(t) = xn(t) +

n+2
i=n

aiTi(t). (27)

As in previous steps, using boundary conditions, we have:

xn+1(−1) = xn(−1) = x0 ⇒ an+2Tn+2(−1)

+ an+1Tn+1(−1) + anTn(−1) = 0, (28)

and:

xn+1(1) = xn(1) = x1 ⇒ an+2Tn+2(1)

+ an+1Tn+1(1) + anTn(1) = 0. (29)

To calculate unknown coefficients, an, an+1, as a function of
an+2, Eqs. (28) and (29) are solved simultaneously;

an =
Tn+1(−1)Tn+2(1) − Tn+1(1)Tn+2(−1)

Tn(−1)Tn+1(1) − Tn(1)Tn+1(−1)
an+2, (30)

and:

an+1 =
Tn(−1)Tn+2(1) − Tn(1)Tn+2(−1)
Tn(1)Tn+1(−1) − Tn(−1)Tn+1(1)

an+2. (31)

Note that the denominator, as mentioned in Lemma 2, is not
zero. So, Eqs. (27), (30) and (31) approximate the solution of the
state variable as follows:

xn+1(t) = xn(t) + an+2Tn+2(t)

+
Tn(−1)Tn+2(1) − Tn(1)Tn+2(−1)
Tn(1)Tn+1(−1) − Tn(−1)Tn+1(1)

an+2Tn+1(t)

+
Tn+1(−1)Tn+2(1) − Tn+1(1)Tn+2(−1)

Tn(−1)Tn+1(1) − Tn(1)Tn+1(−1)
an+2Tn(t),

(32)

and then, u(t) can be obtained from Eq. (17). Now, we obtain J
as a function of an+2 by calculating:

t1 − t0
2

 1

−1
L

t1 − t0

2
t +

t1 + t0
2

, x(t), u(t)

dt,

and call it J(an+2). So, if a∗ is the value that minimizes J(an+2),
then J(a∗) is the solution of the optimal control problem in
Eqs. (17)–(19). State and control variables can be calculated
from a∗ approximately. The above results lead to the following
algorithm, which obtains the optimal performance index, J(·).

Algorithm 2. Object: To obtain an optimal value for J(·).

Step 1. Choose an ε > 0.
Step 2. For n = 1, calculate:

x1(t) = a2T2(t) +


x1 −

x1 + x0

2


T1(t)

+


x1 + x0

2
− a2


T0(t),

and then, calculate a∗

1 ∈ Argmin{J(a) : a ∈ R} and set
ρ1 = J(a∗

1).
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Step 3. Set n → n + 1, and calculate:

xn+1(t) = xn(t) + an+2Tn+2(t)

+
Tn(−1)Tn+2(1) − Tn(1)Tn+2(−1)
Tn(1)Tn+1(−1) − Tn(−1)Tn+1(1)

an+2Tn+1(t)

+
Tn+1(−1)Tn+2(1) − Tn+1(1)Tn+2(−1)

Tn(−1)Tn+1(1) − Tn(1)Tn+1(−1)
an+2Tn(t).

Step 4. Calculate:

a∗

n+1 ∈ Argmin{J(a) : a ∈ R}

and set:

ρn+1 = J

a∗

n+1


.

Step 5. If |ρn+1 − ρn| < ε, then stop, otherwise return to
Step 3.

In the following theorem, the convergence of the algorithm is
proved.

Theorem 3. If J has continuous first derivatives, then limn→∞ ρn
= α, where α = infQ J .

Proof. If we define ρn = minan∈R J(an), then:

ρn = J(a∗

n),

such that:

a∗

n ∈ Argmin{J(an) : an ∈ R}.

Let:

x∗

n(t) ∈ Argmin{J(x(t)) : x(t) ∈ Q ′

n},

then:

J(x∗

n(t)) = min
x(t)∈Q ′

n

J(x(t)),

inwhichQ ′
n is a class of combinations of Chebyshev polynomials

in t of degree n. It is obvious that ρn = J(x∗
n(t)). Furthermore,

according to Corollary 1, we have:

min
x(t)∈Q ′

n+1

J(x(t)) ≤ min
x(t)∈Q ′

n

J(x(t)).

Thus, we will have ρn+1 ≤ ρn which means ρn is a non-
increasing sequence. Now, according to Theorem 1, the proof
is complete, that is:

lim
n→∞

ρn = min
x(t)∈Q

J(x(t)). �

In the next section, we apply the present algorithm to some
engineering problems to show the efficiency and reliability of
our method.

6. Numerical examples

To illustrate the efficiency of the presented algorithm, we
consider the following examples. All problems considered have
continuous optimal controls and can be solved analytically. This
allows verification and validation of themethod by comparison
with results of exact solutions.

In [13], there exists a modified method, which searches
for a single unknown coefficient similar to our work. As seen
from Tables 1–3, our method converges more rapidly than
in [13]. Besides, the problems of controlled linear and Duffing
oscillators, which cannot be solved by the algorithm in [13], are
solved here.

Example 1. In the following example, there is only one control
function, U(τ ), and only one state function, X(τ ), that is
Table 1: The optimal cost functional J for Example 1.

Iteration Present method Error Mehne
method [13]

Error

1 0.328598485 3.3e−4 0.3333333333 5.0e−3

2 0.328259338 5.2e−7 0.3285984848 3.4e−3

3 0.328258837 1.6e−8 0.3284769571 2.1e−4

Table 2: The optimal cost functional J for Example 2.

Iteration Present method Error Mehne
method [13]

Error

1 0.194298642 1.3e−3 0.2513627360 5.8e−2

2 0.192931607 2.2e−5 0.194298642 1.3e−3

3 0.192909776 4.7e−7 0.193828723 9.1e−4

Table 3: The optimal cost functional J for Example 3.

Iteration Present method Error Mehne
method [13]

Error

1 0.0840152601 3.0e−5 0.05332622101 3.0e−2

2 0.0840423344 3.2e−6 0.0840152600 3.0e−5

3 0.0840455804 4.0e−8 0.08402496180 2.0e−5

concerned with minimization of:

J =

 1

0
(U(τ )2 + X(τ )2)dτ , τ ∈ [0, 1], (33)

subject to;

U(τ ) = Ẋ(τ ), (34)

with boundary conditions:

X(0) = 0, X(1) =
1
2
. (35)

The analytical solution is [34]:

X(τ ) =
e(eτ

− e−τ )

2(e2 − 1)
, U(τ ) =

e(eτ
+ e−τ )

2(e2 − 1)
. (36)

In order to use the Chebyshev polynomials, we introduce the
transformation τ =

1
2 t +

1
2 . The optimal control problem in

Eqs. (33)–(35) may then be restated as follows:
Minimize:

J =
1
2

 1

−1
(u(t)2 + x(t)2)dt, t ∈ [−1, 1], (37)

subject to:

u(t) = 2ẋ(t). (38)

With:

x(−1) = 0, X(1) =
1
2
. (39)

By using Step 2 of Algorithm 2, we consider an approximation
of x1(t) to start with, as:

x1(t) = a2(2t2 − 1) +
t
4

+
1
4

− a2. (40)

From Eq. (38), we have:

u(t) = 8a2t +
1
2
. (41)
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Figure 1: Solution of Example 1. The solution in the first iteration is compared
with the actual analytical solution.

Then, substituting Eqs. (40) and (41) into Eq. (37) gives:

J(a2) =
352
15

a22 −
2
3
a2 +

1
3
. (42)

Now, a∗
=

5
352 is the value which minimize J , then J(a∗) =

0.328598485 is the solution of the optimal control problem
(37)–(39), and substituting a∗ into Eqs. (40) and (41) and also
the transformation t = 2τ − 1, we can calculate state and
control variables approximately as:

X1(τ ) =
5
44

τ 2
+

17
44

τ , (43)

and:

U(τ ) =
5
22

τ +
17
44

. (44)

The obtained solution and the analytical solution are plotted in
Figure 1.

In the next step, x2(t) approximates the solution as follows:

x2(t) = x1(t) +

3
i=1

aiTi(t). (45)

Now, the results of repeating the above procedure are shown in
Figure 2.

The approximate solution for the performance index, as
given in [34], is J = 0.3282588215. The optimal cost functional,
J , obtained by the presented algorithm, is shown in Table 1.
Figure 2: Solution of Example 1. The solution in the second iteration compared
with the actual analytical solution.

Example 2 (Problem Treated by El-Gindy et al. [24]). The objec-
tive is to find the optimal control U(τ ), which minimizes:

J =
1
2

 1

0
(U(τ )2 + X(τ )2)dτ , τ ∈ [0, 1], (46)

when:

U(τ ) = Ẋ(τ ) + X(τ ), (47)

and:

X(0) = 1, (48)

are satisfied. We have obtained the analytical solution by use of
Pontryagin’s maximum principle, which is:

X(τ ) = Ae
√
2τ

+ (1 − A)e−
√
2τ ,

U(τ ) = A
√

2 + 1

e
√
2τ

− (1 − A)
√

2 − 1

e−

√
2τ ,

J = +
e−2

√
2

2

√
2 + 1

 
e4

√
2
− 1


A2

+
e−2

√
2

2

√
2 − 1

 
e2

√
2
− 1


(1 − A)2, (49)

where:

A =
2
√
2 − 3

−(e
√
2)2 + 2

√
2 − 3

. (50)
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Figure 3: Solution of Example 2. The solution in the first iteration is compared
with the actual analytical solution.

Transforming τ to time interval [−1, 1], The problem is then
redefined as:

Minimize

J =
1
4

 1

−1
(u(t)2 + x(t)2)dt, (51)

subject to

u(t) = 2ẋ(t) + x(t), −1 ≤ t ≤ 1, (52)

and;

x(−1) = x0 = 1, x(1) = x1 = 0.2819695348. (53)

Note that to be able to use the presented algorithm, X(1) needs
to be calculated. Here, we have calculated X(1) from Eq. (49).

By using Step 2 of Algorithm 2, we consider an approxima-
tion of x1(t) to start with, as:

x1(t) = a2(2t2 − 1) − 0.3590t + 0.64109 − a2, (54)

from Eq. (52), we have:

u(t) = 2a2t2 + (8a2 − 0.3590)t − 2a2 − 0.0770. (55)

Then, substituting Eqs. (54) and (55) into Eq. (51) gives:

J(a2) = 12.8000a22 − 1.7093a2 + 0.2514. (56)

Now, a∗
= 0.0668 is the value that minimizes J , then J(a∗) =

0.194298642 is the solution of the optimal control problem
51–53, and substituting a∗ into Eqs. (54) and (55) and also the
Figure 4: Solution of Example 2. The solution in the second iteration compared
with the actual analytical solution.

transformation t = 2τ − 1, we can calculate state and control
variables approximately as:

X1(τ ) = 0.5341τ 2
− 1.2522τ + 1, (57)

and:

U(τ ) = 0.5342τ 2
− 0.1839τ − 0.2522. (58)

The obtained solution and the analytical solution are plotted in
Figure 3.

In the next step, x2(t) approximates the solution as follows:

x2(t) = x1(t) +

3
i=1

aiTi(t). (59)

Now, the results of repeating the above procedure are shown in
Figure 4.

The approximate solution for the performance index is J =

0.1929092978. The optimal cost functional, J , obtained by the
presented algorithm is shown in Table 2.

Example 3. The following example [35] is concerned with
minimization of:

J =

 1

0


X(τ ) −

1
2
U(τ )2


dτ , τ ∈ [0, 1], (60)

subject to:

U(τ ) = Ẋ(τ ) + X(τ ), (61)

with boundary conditions:

X(0) = 0, X(1) =
1
2


1 −

1
e

2

, (62)
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Figure 5: Solution of Example 3. The solution of the first iterative compared
with the actual analytical solution.

where the analytical solution is:

X(τ ) = 1 −
1
2
eτ−1

+


1
2e

− 1

e−τ ,

U(τ ) = 1 − eτ−1. (63)

We can calculate state and control variables approximately as:

X1(τ ) = −0.4091τ 2
+ 0.6089τ , (64)

and:

U(τ ) = −0.4091τ 2
− 0.2095τ + 0.6089. (65)

The obtained solution and the analytical solution are plotted in
Figure 5.

Now, the results of repeating the above procedure are shown
in Figure 6.

The approximate solution for the performance index,
as given in [32], is J = 0.08404562020. The optimal cost
functional, J , obtained by the presented algorithm is shown in
Table 3.

7. The controlled linear oscillator

We will consider the optimal control of a linear oscillator
governed by the differential equation:

U(τ ) = Ẍ(τ ) + ω2X(τ ), τ ∈ [−T , 0], (66)
inwhichdot (·)means differentiation,with respect to τ , and T is
specified. Eq. (66) is equivalent to the dynamic state equations:
Ẋ1(τ ) = X2(τ ),

Ẋ2(τ ) = −ω2X1(τ ) + U(τ ), (67)
Figure 6: Solution of Example 3. The solution in the second iteration compared
with the actual analytical solution.

with the boundary conditions:

X1(−T ) = X10, X2(−T ) = X20,

X1(0) = 0, X2(0) = 0. (68)

It is desired to control the state of this plant, such that the
performance index,

J =
1
2

 0

−T
U2(τ )dτ , (69)

is minimized over all admissible control functions, U(τ ).
Pontryagin’s maximum principle method [3], applied to this

optimal control problem, yields the following exact analytical
solution [36]:

X1(τ ) =
1

2ω2
[Aωτ sinωτ + B(sinωτ − ωτ cosωτ)] ,

X2(τ ) =
1
2ω

[A(ωτ sinωτ + ωτ cosωτ) + Bωτ sinωτ ] ,

U(τ ) = A cosωτ + B sinωτ,

J =
1
8ω


2ωT


A2

+ B2
+


A2

− B2 sin 2ωT − 4AB sin2 ωT

, (70)

where:

A =
2ω[x10ω2T sinωT − x20(ωT cosωT − sinωT )]

ω2T 2 − sin2 ωT
,

B =
2ω2

[x20T sinωT + x10(ωT cosωT + sinωT )]

ω2T 2 − sin2 ωT
. (71)
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7.1. Solution of the problem using Algorithm 2

The optimal control problem described in Eqs. (66)–(69) can
be restated as follows:
Minimize

J =
T
4

 1

−1
u2(t)dt, (72)

subject to:

u(t) = ω2x(t) +
4
T 2

ω2ẍ(t), t ∈ [−1, 1], (73)

with:

x(−1) = x−1, ẋ(−1) = ẋ−1,

x(1) = 0, ẋ(1) = 0. (74)

We consider this approximation of x(·) to start with:

x1(t) =

4
i=0

aiTi(t). (75)

Using boundary conditions (74), we have:
a0 − a1 + a2 − a3 + a4 = x−1
a0 + a1 + a2 + a3 + a4 = 0
a1 + 4a2 + 9a3 − 16a4 = ẋ−1
a1 + 4a2 + 9a3 + 16a4 = 0.

(76)

Then, a0, a1, a2, a3 are obtained as a function of a4 by solving the
linear system of equations given by:

a0 =
1
2
x−1 +

1
8
ẋ−1 + 3a4,

a1 = −
9
16

x−1 −
1
16

ẋ−1,

a2 = −4a4 −
1
8
ẋ−1 + 3a4,

a3 =
1
16

x−1 +
1
16

ẋ−1. (77)

Now, substituting Eq. (77) into (75) yields:

x1(t) = 8a4t4 +
1
4
ẋ−1t3 −


16a4 +

1
4
ẋ−1


t2

−


3
4
x−1 +

1
4
ẋ−1


t +


8a4 +

1
2
x−1 +

1
4
ẋ−1


, (78)

and then u(t) is obtained from Eq. (73)

u(t) =
1

4T 2
(32T 2ω2a4t4 + T 2ω2(ẋ−1 + x−1)t3

− T 2ω2(ẋ−1 + x−1)t2 − T 2ω2(ẋ−1 + 3x−1)

+ T 2ω2(32a4 + ẋ−1 + 2x−1) + 1536a4t2

+ 24(x−1 + ẋ−1)t − 512a4 − 8ẋ−1). (79)

Now,we obtain J as a function of a4 by calculating T
2

 1
−1 u

2(t)dt ,
and denote it by J(a4). So, the value which minimizes J(a4) is
given by:

a∗
= −

3
256

T 2ω2(7T 2ω2
+ 3T 2ω2x−1 − 56ẋ−1)

T 4ω4 − 24T 2ω2 + 504
. (80)

J(a∗) is the solution of the optimal control problem
(Eqs. (72)–(74)). Also, we can calculate state and control vari-
ables from a∗ approximately. Now,we report the Chebyshev ap-
proximation of the state and control variables of the controlled
Figure 7: Solution of the controlled linear oscillator problem. The solution in
the first iteration compared with the actual analytical solution.

linear oscillator problem, with the following choice of numeri-
cal values of parameters in a standard case:

ω = 1, T = 2, x−1 = 0.5, ẋ−1 = −0.5. (81)

Substituting the values in Eq. (81) into Eqs. (78) and (79) yields:

x1(t) = 8a4t4 −


16a4 −

1
8


t2 −

1
4
t + 8a4 +

1
8
, (82)

and:

u(t) = 8a4t4 +


80a4 +

1
8


t2 −

1
4
t − 24a4 +

3
8
. (83)

Also, by Eq. (72), we have:

J(a4) =
217088
315

a24 +
192
35

a4 +
47
240

, (84)

where a∗
= −

27
6784 is the value which minimizes J(a4), and

J(a∗) = 0.184916891 is the solution of the optimal control
problem (Eqs. (72)–(74)). By substituting a∗ into Eqs. (82) and
(83) and also using the transformation, t =

2
T τ + 1, we can

calculate state and control variables approximately as:

X1(τ ) = −0.0318τ 4
− 0.1274τ 3

− 0.0024τ 2, (85)

and:

U(τ ) = −0.0318τ 4
− 0.1274τ 3

− 0.3844τ 2

−0.7642τ − 0.0047. (86)

The solution obtained and the analytical solutions are plotted in
Figure 7.
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Figure 8: Solution of the controlled linear oscillator problem. The solution in
the second iteration compared with the actual analytical solution.

Table 4: The optimal cost functional J for the controlled linear oscillator
problem.

Iteration Present method Error

1 0.184916891 0.5e−4

2 0.184873530 0.14e−4

3 0.184858576 3.4e−8

Now, the results of the above procedure repeated once again
are shown in Figure 8.

The approximate solution for the performance index, as
given in [36], is J = 0.184858542. The optimal cost functional,
J , obtained by the presented algorithm, is shown in Table 4.

7.2. The controlled Duffing oscillator

Let us now investigate the optimal control of the Duffing
oscillator, described by the nonlinear differential equation:

U(τ ) = Ẍ(τ ) + ω2X(τ ) + εX3(τ ), τ ∈ [−T , 0]. (87)

Subject to boundary conditions andwith the performance index
pointed out, as in the previously linear case, Eq. (87) is replaced
by:

u(t) =
4
T 2

ẍ(t) + ω2x(t) + εx3(t), t ∈ [−1, 1]. (88)

The exact solution in this case is not known.
Table 5 lists the optimal values of the cost functional J for

various values of ε in three iterations.
Table 5: The optimal cost functional J for Duffing oscillator problem for
various values of ε.

Present method
ε = 0.15 ε = 0.5 ε = 0.75

1 0.187529215 0.193708049 0.198192304
2 0.187456249 0.193534882 0.197920110
3 0.187444872 0.193530147 0.197918461

The approximate solution for the performance index, as
given in [24,37], is J = 0.187444856, with ε = 0.15 and
J = 0.19353033 for ε = 0.5, also, J = 0.19791863 for ε = 0.75.

8. Conclusion

In this paper, a new computational algorithm forminimizing
the performance index was obtained by utilizing Chebyshev
polynomials. This algorithm provides a simple way to adjust
and obtain an optimal control that can easily be applied to
complex problems as well. One advantage of this method is the
use of a computational algorithm with fast convergence. This
algorithm, which is a modification of the algorithm in [13], can
be used to approximate control and state variables as a function
of time. Some examples were solved by this algorithm, and the
results show that the presented algorithm is more powerful
and sufficient than that in previous work, requiring less
computationalwork and, hence, creating a significant reduction
in computational costs, which is an important factor when
choosing a method in engineering applications. The suggested
algorithm was then applied to control the Duffing oscillator
problem. The results obtained demonstrate and emphasize the
reliability and efficiency of the proposed algorithm.
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