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a b s t r a c t

This paper addresses the distributed H2 and H∞ control problems for multi-agent systems with linear
or linearized dynamics. An undirected multigraph with loops is used to represent the communication
topology of a multi-agent network. A distributed controller is designed, based on the relative states of
neighboring agents and a subset of absolute states of the networked agents. The notions of H∞ and H2
performance regions are introduced and analyzed, respectively. A necessary and sufficient condition for
the existence of a controller yielding an unbounded H∞ performance region is derived. A multi-step
procedure for suboptimal H∞ controller synthesis is presented. It is also shown that the H∞ performance
limit of the network under the distributed controller is equal to the minimal H∞ norm of a single agent
achieved by using the state feedback controller. It is finally shown that, contrarily to the H∞ case, the H2
performance limit scales with the number of agents in the network.
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1. Introduction

In recent years, the coordination control problemofmulti-agent
systemshas received increasing attention fromscientific especially
systems and control communities, for its broad applications
in various fields such as satellite formation flying, cooperative
unmanned air vehicles, sensor networks, and air traffic control, to
name just a few. Due to the spatial distribution of actuators and
limited sensing capability of sensors, it is considered too expensive
or even infeasible in practice to implement centralized controllers.
Thus, distributed control appears to be a promising tool for multi-
agent systems.

Formation control of autonomous vehicles was considered
in Fax and Murray (2004), where a Nyquist-like criterion was
derived. In Gupta, Hassibi, and Murray (2005), it was concerned
with the synthesis problem of a linear quadratic regulator (LQR)
controller subject to certain particular vector space constraints,
and distributed LQR control of a set of identical decoupled
dynamical systems where the performance index couples the
behavior of the systems was discussed in Borrelli and Keviczky
(2008). A theoretical explanation was provided in Jadbabaie,
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Lin, and Morse (2003) for the behavior observed in the Vicsek
model Vicsek, Czirók, Ben-Jacob, Cohen, and Shochet (1995). In
Olfati-Saber and Murray (2004), a general framework of the
consensus problem for networks of dynamic agents with fixed
or switching topologies and communication time-delays was
established. The conditions derived in Jadbabaie et al. (2003)
and Olfati-Saber and Murray (2004) were further relaxed in Ren
and Beard (2005). Also, in Hong, Chen, and Bushnell (2008);
Hong, Hu, and Gao (2006), it was considered about tracking
control for multi-agent consensus with an active leader, where
a local controller was designed together with a neighbor-based
state-estimation rule. A distributed algorithm was proposed in
Cortés (2008) to asymptotically achieve consensus in finite time.
The notion of consensus region was introduced in Li, Duan,
Chen, and Huang (2010) as a basis for a multi-step consensus
protocol design algorithm. Flocking algorithms were investigated
in Olfati-Saber (2006), Su, Wang, and Lin (2009) and Tanner,
Jadbabaie, and Pappas (2007) for a group of autonomous agents. A
decomposition approachwas proposed inMassioni and Verhaegen
(2009) to solve the distributed H2 and H∞ control of identical
coupled linear systems. Last but not least, stability analysis and
decentralized control problems for linear and sector-nonlinear
complex dynamical networks were studied in Duan, Wang, Chen,
and Huang (2008). More investigation reports can be found from
the references of the aforementioned papers.

This paper considers distributed H∞ and H2 control of a multi-
agent system with linear or linearized dynamics. An undirected
multigraph with loops is used to model the communication
topology of the multi-agent network. Contrary to the assumption
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that every system has access to its own state or output (e.g.,
in Borrelli & Keviczky, 2008; Fax & Murray, 2004; Massioni &
Verhaegen, 2009), it is supposed in this paper that only a subset
of agents have complete information about their own states.
Thus, the cooperation in terms of information exchanges among
neighboring agents becomes vital to achieve the given control goal.
The distributed controller proposed here is based on the relative
states of neighboring agents and a subset of absolute states of
the networked agents. A distinct feature of this paper is that by
introducing a positive scalar, i.e., the coupling strength, the novel
notions of H∞ and H2 performance regions are introduced and
characterized. The H∞ and H2 performance regions, which can
be regarded as an extension of the consensus region introduced
in Li et al. (2010) to evaluate the performance of a multi-agent
network subject to external disturbances, pave a new way for
distributed controller synthesis, differentiating the present paper
from related works Li, Duan, and Huang (2009) and Massioni and
Verhaegen (2009). It will be pointed out through several examples
that the H∞ and H2 performance regions can serve as a measure
for the robustness of the distributed controller with respect to the
communication topology of the multi-agent network.

The distributedH∞ control problemof themulti-agent network
is converted to the H∞ control problem of a set of independent
systems of the same dimension as a single agent. A necessary and
sufficient condition for the existence of a distributed controller
yielding an unbounded H∞ performance region is derived, based
on which a multi-step procedure for H∞ controller synthesis
is further presented, which maintains a favorable decoupling
property. It is shown that theH∞ performance limit of the network
under the distributed controller is equal to the minimal H∞

norm of an isolated agent achieved by using the state feedback
controller, independent of the communication topology as long
as it is connected. To the best of the authors’ knowledge, it
is the first time to obtain the exact H∞ performance limit of
distributed control for linear multi-agent systems, although with
the limitation of not being able to weight the control effort in
the performance output, while the results in related works Li
et al. (2009) and Massioni and Verhaegen (2009) allow putting a
penalty on the control effort but they are conservative. Contrary
to the H∞ case, using H2 performance region to characterize
the H2 performance of a multi-agent network introduces certain
conservatism, and the H2 performance limit of the multi-agent
network scales with the number of agents, implying the inherent
difference between the H2 and H∞ norms used for distributed
control of multi-agent networks. Finally, it is worth mentioning
that the commondistributed controller adopted here for a network
of identical agents may set a limit on theH∞ andH2 performances.
Yet, whether or not different controllers for identical agents can
improve these performances is an interesting topic for future
studies.

The rest of this paper is organized as follows. Some useful
results of the graph theory are introduced and the problem is
formulated in Section 2. The H∞ performance region is analyzed
and the proposed controller is designed in Section 3. The H2
performance region is considered in Section 4. Section 5 concludes
the paper.

Throughout this paper, the following notations will be used: let
Rn×n be the set of n×n real matrices. R+ denotes the set of positive
real numbers.Matrices, if not explicitly stated, are assumed to have
compatible dimensions. The superscript T means the transpose
for real matrices. IN represents the identity matrix of dimension
N . Denote by 1 the column vector with all entries equal to one.
L2[0, ∞) denotes the space of square integrable vector functions
over [0, ∞). For real symmetric matrices X and Y , X > Y means
that matrix X − Y is positive definite. A⊗ B denotes the Kronecker
product of matrices A and B. diag(A1, . . . , An) represents a block-
diagonal matrix with matrices Ai, i = 1, . . . , n, on its diagonal. For
a square matrix A, σ̄ (A) denotes its maximal singular value and
tr(A) denotes its trace. A matrix is Hurwitz (or stable) if all of its
eigenvalues have negative real parts.

2. Preliminaries

2.1. Graph theory

An undirected graph G is a pair (V, E), where V = {1, . . . , p}
is the set of nodes and E ⊆ V × V is the set of unordered pairs
of nodes, called edges. Two nodes i, j are adjacent, or neighboring,
if (i, j) is an edge of graph G. The edges in the form of (i, i) are
called loops. A graphwith loops is called amultigraph, otherwise is
a simple graph (Diestel, 1997). A path onG fromnode i1 to node il is
a sequence of ordered edges of the form (ik, ik+1), k = 1, . . . , l−1.
An undirected graph is connected if there exists a path between
every pair of distinct nodes, otherwise is disconnected.

The adjacency matrix A ∈ Rp×p of graph G is defined by aii = 1
if node i has a loop but 0 otherwise, and aij = aji = 1 if (i, j) ∈ E
but 0 otherwise. The LaplacianmatrixL ∈ Rp×p is defined asLii =∑p

j=1 aij,Lij = −aij for i ≠ j. To avoid ambiguity, denote byLm the
Laplacianmatrix of a multigraph and by Ls the Laplacianmatrix of
a simple graph. For an undirected graph, both its adjacency matrix
and its Laplacian matrix are symmetric.

Lemma 1 (Ren & Beard, 2005). For a simple graph,0 is an eigenvalue
of Ls with 1T as the corresponding right eigenvector and all the
nonzero eigenvalues have positive real parts. Furthermore, 0 is a
simple eigenvalue of Ls if and only if the graph is connected.

Lemma 2. For a multigraph with at least one loop, the Laplacian
matrix Lm is positive definite, if the graph is connected.

Proof. By the definition of Lm, it can be written as Lm = Ls +

Ã, where Ls is the Laplacian matrix of the graph with all loops
being removed and Ã = diag(a11, . . . , app) having at least one
diagonal item being positive. Thus, the positive definiteness of Lm
associated with a connected graph follows directly from either
Lemma 1 in Chen, Liu, and Lu (2007) or Lemma 3 in Hong et al.
(2006). �

2.2. Problem formulation

Consider a network of N identical agents with linear or
linearized dynamics, described by

ẋi = Axi + B1ui + D1ωi,
zi = Cxi + D2ωi, i = 1, 2, . . . ,N,

(1)

where xi ∈ Rn is the state of the ith agent, ui ∈ Rp is the
control input, ωi ∈ L

m1
2 [0, ∞) is the exogenous input including

plant disturbances, measurement noise, etc., zi ∈ Rm2 denotes the
performance variable, and A, B1, C , D1, D2 are constant matrices
with compatible dimensions.

The communication topology among the N agents is repre-
sented by an undirected multigraph G consisting of the node set
V = {1, . . . ,N} and the edge set E ⊂ V × V . A loop (i, i) means
that agent i knows its own state, and an edge (i, j) (i ≠ j) means
that agents i and j can obtain information from each other.

Differing from the assumption in Borrelli and Keviczky (2008),
Fax and Murray (2004) and Massioni and Verhaegen (2009) that
the local state is available to every agent, it is supposed here that
only a subset of agents know their own states. In this case, it is
critical for neighboring agents to exchange information in order
to achieve a given control goal. Without loss of generality, assume
that the first q (q ≪ N) agents have access to their state informa-
tion, i.e., there are loops around the first q nodes in graph G.
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A distributed control law is proposed here as

ui = cK


N−
j=1

aij(xi − xj) + aiixi


, (2)

where K ∈ Rp×n are feedback gain matrices to be determined,
c > 0 denotes the coupling strength,A = (aij)N×N is the adjacency
matrix of graph G with aii = 1 for i = 1, . . . , q, and aii = 0 for
i = q + 1, . . . ,N .

Let x = [xT1, . . . , x
T
N ]

T , ω = [ωT
1 , . . . , ω

T
N ]

T , and z =

[zT1 , . . . , zTN ]
T . Then, the closed-loop system resulting from (1) and

(2) can be written as

ẋ = (IN ⊗ A + cLm ⊗ B1K)x + (IN ⊗ D1)ω,
z = (IN ⊗ C)x + (IN ⊗ D2)ω,

(3)

where Lm is the Laplacian matrix associated with graph G. Denote
by Tωz the transfer function matrix from ω to z of system (3).

The suboptimal H∞ control problem for system (3) is stated as
follows: for a given allowable γ > 0, find a distributed controller
(2) such that (i) system (3) is asymptotically stable; (ii) ‖Tωz‖∞ <
γ , where ‖Tωz‖∞ is the H∞ norm of Tωz , defined by ‖Tωz(s)‖∞ =

supw∈R σ̄ (Tωz(jw)) (Zhou & Doyle, 1998). The H∞ performance
limit of network (3) is defined as the minimal ‖Tωz(s)‖∞ of (3)
achieved by using controller (2).

Assume hereafter that the communication graph G is con-
nected. Then, the Laplacian matrix Lm is positive definite. Denote
by 0 < λ1 ≤ λ2 ≤ · · · ≤ λN the eigenvalues of Lm.

Theorem 3. For a given γ > 0, system (3) is asymptotically stable
and ‖Tωz‖∞ < γ , if and only if the following N systems are
simultaneously asymptotically stable and the H∞ norms of their
transfer function matrices are all less than γ :

˙̂xi = (A + cλiB1K)x̂i + D1ω̂i,
ẑi = Cx̂i + D2ω̂i, , i = 1, 2, . . . ,N.

(4)

Proof. Let U ∈ RN×N be a unitary matrix such that U−1LmU =

Λ = diag(λ1, . . . , λN). Let x = (U⊗ In)x̂, where x̂ = [x̂T1, . . . , x̂
T
N ]

T .
Then, system (3) can be rewritten in terms of x̂ as

˙̂x = (IN ⊗ A + cΛ ⊗ B1K)x̂ + (U−1
⊗ D1)ω,

z = (U ⊗ C)x̂ + (IN ⊗ D2)ω.
(5)

Further, reformulate the disturbance variable ω and the perfor-
mance variable z via

ω = (U ⊗ Im1)ω̂, z = (U ⊗ Im2)ẑ. (6)

Then, substituting (6) into (5) gives

˙̂
ξ = (IN ⊗ A + cΛ ⊗ B1K)x̂ + (IN ⊗ D1)ω̂,
ẑ = (IN ⊗ C)x̂ + (IN ⊗ D2)ω̂,

(7)

where ŵ = [ω̂1, . . . , ω̂N ], ẑ = [ẑ1, . . . , ẑN ]. Note that (7) is
composedof theN individual systems in (4). Denote by Tω̂ẑ and Tω̂i ẑi
the transfer function matrices of systems (7) and (4), respectively.
Then, it follows from (4), (6) and (7) that

Tω̂ẑ = diag(Tω̂1 ẑ1 , . . . , Tω̂N ẑN )

= (U−1
⊗ Im1)Tωz(U ⊗ Im2), (8)

which implies that

‖Tω̂ẑ‖∞ = max
i=1,...,N

‖Tω̂i ẑi‖∞ = ‖Tωz‖∞. (9)

This completes the proof. �
Remark 1. Theorem 3 converts the distributed H∞ control prob-
lem of the multi-agent network (3) into the H∞ control problems
of a set of independent systems having the same dimensions as a
single agent in (1), thereby reducing the computational complexity
significantly. The key tools leading to this result rely on the state,
the input and the output transformation all together, as used in,
e.g., Li et al. (2009) and Massioni and Verhaegen (2009).

Remark 2. For the case where the communication graph G is a
simple graph, i.e., aii = 0 in controller (2), it follows from Lemma 1
that λ1 = 0 in (4). The system in (4) corresponding to λ1 = 0 is
the same as a single agent in (1) with ui = 0. Therefore, the H∞

performance limit of system (3) in this case is not less than the
H∞ norm of (1) with ui = 0. This implies that at least one state
feedback will be needed in controller (2), i.e., graph G cannot be
simple but must have at least one loop in order to reach a better
H∞ performance.

Remark 3. Contrary to the distributed controllers proposed in
Borrelli and Keviczky (2008), Fax and Murray (2004), Gupta et al.
(2005) andMassioni and Verhaegen (2009), where state feedbacks
are required in the controllers to all the agents, controller (2) needs
only a subset of agents to know their own states, thereby fully
utilizing the favorable effects of relative-state feedbacks. Another
unique feature of controller (2) is that by introducing a constant
scalar c > 0, called the coupling strength, the notions of H∞ and
H2 performance regions can be brought forward, as detailed in the
following sections.

3. H∞ performance region

Given a controller in the formof (2), the distributedH∞ problem
of network (3) can be recast into analyzing the following system:

ζ̇ = (A + σB1K)ζ + D1ωi,
zi = Cζ + D2ωi,

(10)

where ζ ∈ Rn and σ ∈ R, with σ depending on c . The transfer
function of system (10) is denoted byTωizi . Clearly, the stability and
H∞ performance of system (10) depends on the scalar parameter
σ .

The notion of H∞ performance region is defined as follows.

Definition 1. The region Sγ of the parameter σ ∈ R+, such that
system (10) is asymptotically stable and ‖Tωizi‖∞ < γ , is called the
H∞ performance region with performance index γ of network (3).

The H∞ performance region can be regarded as an extension
of the consensus region introduced in Li et al. (2010) and the
synchronization region studied in Pecora and Carroll (1998) and
Duan, Chen, andHuang (2008), used to evaluate the performance of
a multi-agent network subject to external disturbances. According
to Theorem 3, one has the following corollary.

Corollary 4. Network (3) is asymptotically stable and ‖Tωz‖∞ < γ ,
if and only if cλi ∈ Sγ , for i = 1, 2, . . . ,N.

For a controller of the form (2), its H∞ performance region with
index γ , if it exists, is an interval or a union of several intervals
on the real axis, where the intervals themselves can be either
bounded or unbounded. The H∞ performance region can serve
as a measure for the robustness of controller (2) with respect to
the communication topology of (3), as illustrated by the several
examples given below.

3.1. Examples and analysis

The first example has a bounded H∞ performance region.
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Fig. 1. The H∞ performance region.

Fig. 2. The communication topology.

Example 1. The agent dynamics and the controller are given by (1)
and (2), respectively, with

A =

[
−2 1.5
−1 1

]
, B1 =

[
1

−1

]
, D1 =

[
1
0.6

]
,

C =

1 1.2


, D2 = 0, K =


1 0.9


.

(11)

The H∞ performance of (10) with respect to parameter σ is
depicted in Fig. 1. It can be observed that Sγ>1.751, i.e., the H∞

performance region with index γ larger than the minimal value
1.751, is a bounded interval of σ in R; for example, Sγ=3.2 is
[0.101635, 4.4668].

For illustration, let the communication topology G be given as
in Fig. 2, with Laplacian matrix

Lm =


5 −1 −1 −1 −1 0

−1 2 −1 0 0 0
−1 −1 2 0 0 0
−1 0 0 2 −1 0
−1 0 0 −1 3 −1
0 0 0 0 −1 1

 .

The minimal and maximal eigenvalues of Lm are 0.1355 and
5.8928, respectively. Thus, controller (2) solves the suboptimalH∞

problem with γ = 3.2 for the graph given in Fig. 2 if and only if c
(converted from σ ) lies within the set [0.7501, 0.7580].

Let us see how modifications of the communication topology
affect the H∞ performance by considering the following simple
cases.
Fig. 3. The disconnected H∞ performance region.

• An edge between node 1 and node 6 is added, i.e., more
information exchanges exist inside the network. The minimal
and maximal eigenvalues of the resulting Laplacian matrix are
0.1459 and 6.8541, respectively. Thus, it can be verified that
controller (2) fails to solve the suboptimal H∞ problem with
γ = 3.2 for any c ∈ R+.

• The edge between node 4 and node 5 is removed. The minimal
and maximal eigenvalues of the resulting Laplacian matrix
become 0.1336 and 5.8857, respectively. The controller (2) in
this case also fails to solve the suboptimal H∞ problem with
γ = 3.2.

• The loop around node 1 in Fig. 2 ismoved to node 6, i.e., the self-
feedback part in (2) acts on agent 6 rather than on agent 1. The
minimal and maximal eigenvalues of the resulting Laplacian
matrix are 0.0788 and 5.1186, respectively. Once again, the
controller fails to solve the suboptimal H∞ problem with
γ = 3.2.

These sample cases imply that the distributed controller (2), if not
well designed, can be quite fragile to variations of the network’s
communication topology. In other words, it is desirable for the H∞

performance region to be large enough in order to ensure that the
controller maintain a desired robustness margin with respect to
the communication topology.

The second example has a disconnected H∞ performance
region.

Example 2. The agent dynamics and the controller are given by (1)
and (2), respectively, with

A =

[
−0.32 −20.6
4.6 0.4

]
, B1 =

[
1.5 0.3
0 1

]
, D1 =

[
1
0

]
,

C =

0 1


, D2 = 0, K =

[
0 2

−0.8 0

]
.

The H∞ performance region of (10) with respect to parameter σ is
depicted in Fig. 3, which is composed of two disjoint subregions,
of which one is bounded and the other is unbounded. It can be
verified that Sγ=3.2 = [0.98, 5.5267] ∪ [7.2116, ∞). For the
communication topology given in Fig. 2, the controller (2) solves
the suboptimal H∞ problem with γ = 3.2, if and only if c ≥

53.2221 (after converting σ to c).

3.2. H∞ performance limit and synthesis

It was shown in the last subsection that the distributed
controller should have a large enough H∞ performance region
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to be robust with respect to the communication topology. One
convenient and desirable choice is to design the controller with an
unbounded H∞ performance region.

Lemma 5 (Bounded Real Lemma Zhou & Doyle, 1998). Let γ > 0
and G(s) = C(sI −A)−1B+D. Then, the following two statements are
equivalent:
(1) A is stable and ‖G(s)‖∞ < γ .
(2) σ̄ (D) < γ and there exists an X > 0 such that

AX + XAT
+ XCTCX + (B + XCTD)

× (γ 2
− DTD)−1(BT

+ DTCX) < 0.

In the following, a necessary and sufficient condition is derived
for the existence of a controller (2) having an unbounded H∞

performance region.

Theorem 6. For a given γ > 0, there exists a controller (2) having an
unbounded H∞ performance region if and only if there exist a matrix
P > 0 and a scalar τ > 0 such thatAP + PAT

− τB1BT
1 D1 PCT

DT
1 −γ 2I DT

2
CP D2 −I

 < 0. (12)

Moreover, the unbounded H∞ performance region Sγ contains
[τ , ∞).
Proof. For simplicity, only the special case with D2 = 0 is
discussed here. The proof for the case of D2 ≠ 0 is quite similar,
just notationally more involved.
(Necessity) According to Definition 1, if network (3) has an
unboundedH∞ performance region, then A+σB1K is Hurwitz and
‖C(sI − A − σB1K)−1D1‖∞ < γ for some matrix K and scalar σ .
Since K is to be designed, without loss of generality, choose σ = 1.
By Lemma 5, there exists a matrix K such that A + B1K is Hurwitz,
and ‖C(sI − A − B1K)−1D1‖∞ < γ , if and only if there exists a
matrix P > 0 such that

(A + B1K)P + P(A + B1K)T +
1
γ 2

D1DT
1 + PCTCP < 0.

Let Y = KP . Then, the above inequality becomes

AP + PAT
+ B1Y + Y TBT

1 +
1
γ 2

D1DT
1 + PCTCP < 0.

By Finsler’s Lemma (Iwasaki & Skelton, 1994), there exists a matrix
Y satisfying the above inequality if and only if there exists a scalar
τ > 0 such that

AP + PAT
− τB1BT

1 +
1
γ 2

D1DT
1 + PCTCP < 0, (13)

which, in virtue of the Schur Complement Lemma (Boyd, El Ghaoui,
Feron, & Balakrishnan, 1994), is equivalent toAP + PAT

− τB1BT
1 D1 PCT

DT
1 −γ 2I 0

CP 0 −I

 < 0. (14)

(Sufficiency) If (14) holds for some matrix P > 0 and scalar τ > 0,
then (13) holds also. Take K = −

1
2B

T
1P

−1. Then, for cλi ≥ τ ,
i = 1, 2, . . . ,N , it follows from (13) that

(A + cλiB1K)P + P(A + cλiB1K)T +
1
γ 2

D1DT
1 + PCTCP

= AP + PAT
− cλiB1BT

1 +
1
γ 2

D1DT
1 + PCTCP < 0, (15)

implying that ‖C(sI − A − cλiB1K)−1D1‖∞ < γ , i = 1, 2, . . . ,N ,
i.e., controller (2) with K given as above has an unbounded H∞

performance region containing [τ , ∞). �
The exact H∞ performance limit of network (3) under controller
(2) is now obtained as a consequence.

Corollary 7. The H∞ performance limit γmin of network (3) under
controller (2) is given by the following optimization problem:

minimize γ
subject to LMI (12), with P > 0, τ > 0, γ > 0. (16)

Remark 4. Note that the H∞ performance limit γmin of network
(3), consisting of N agents in (1) under controller (2), is actually
equal to the minimal H∞ norm of a single agent (1) by using
a state feedback controller of the form ui = Fxi, independent
of the communication topology G as long as it is connected. To
the best of the authors’ knowledge, this is the first time that the
exact H∞ performance limit of distributed control for linear multi-
agent systems is derived. Comparing to related works Li et al.
(2009) and Massioni and Verhaegen (2009), the conditions given
there are relatively conservative. It should be mentioned that the
performance output zi is assumed here not to directly depend
upon ui, while the designs in Li et al. (2009) and Massioni and
Verhaegen (2009) allow putting a penalty on the control law and
are applicable even to output feedback controllers. Moreover, the
minimum γmin achieved by solving LMI (16) generally corresponds
to a high-gain controller (2), as depicted in the example below.
Choosing a γ a little bigger than γmin would help keep the gain
smaller.

A procedure for the H∞ controller synthesis is now presented.

Algorithm 1. For any γ ≥ γmin, where γmin is given by (16), the
controller (2) solving the distributed H∞ control problem can be
constructed as follows:

(1) Solve LMI (12) for a feasible solution: P > 0 and τ > 0.
(2) Choose the feedback gain matrix K = −

1
2B

T
1P

−1.
(3) Select the coupling strength c not less than the threshold value

cth =
τ

min
i=1,...,N

λi
, where λi, i = 1, 2, . . . ,N , are the eigenvalues

of Lm.

Remark 5. The above design procedure for constructing a dis-
tributed H∞ controller has a favorable decoupling feature. Specif-
ically, steps (1) and (2) design the feedback gain matrix K of
controller (2) to yield an unboundedH∞ performance region, deal-
ing only with the agent dynamics, while step (3) adjusts the cou-
pling strength c such that cλi, i = 1, 2, . . . ,N , lie in this region.
This feature is very desirable for the case where the agent number
N is large, forwhich the eigenvalues of the corresponding Laplacian
matrix Lm are hard to determine or even troublesome to estimate.
Here, one only needs to choose the coupling strength to be large
enough.

Example 3. The agent dynamics are given by

A =

[
−2 2
−1 1

]
, B1 =

[
1

−1

]
, D1 =

[
1
0.6

]
,

C =

1 0.8


, D2 = 0.

Solving LMI (12) with γ = 1 by using toolboxes Yalmip (Löfberg,
2004) and SeDuMi (Sturm, 1999) give a feasible solution: P =

1.239 0.1371
0.1371 0.2015


and τ = 1.5325. Thus, the feedback gain matrix

is chosen as K =

−0.7332 2.98


. By Algorithm 1, controller (2)

with this matrix K has an unboundedH∞ performance regionwith
index γ = 1 in the form of [1.5325, ∞). This can also be verified
in another way by depicting the H∞ norm of system (10) with
respect to scalarσ in Fig. 4, fromwhich it can be observed thatSγ=1
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Fig. 4. The unbounded H∞ performance region.

contains the region [1.5325, ∞). For the graph in Fig. 2, controller
(2)withK chosen above solves the suboptimalH∞ control problem
with γ = 1, if the coupling strength c is not less than the threshold
value cth = 11.31.

By solving the optimization problem (16), the H∞ performance
limit of network (3) under controller (2) can be further obtained, as
γmin = 0.0546. The corresponding optimal feedback gain matrix
of (2) is obtained as K =


2.8018 2.8154


, and the scalar τ in

(12) is τ = 2.2202 × 106. For the graph in Fig. 2, the threshold
cth corresponding to γmin is cth = 1.6385 × 107 in this numerical
example.

4. H2 performance region

In this section, the H2 performance of network (3) is discussed.
For a stable transfer function F(s), itsH2 norm is defined as ‖F‖2 =

{
1
2π


∞

−∞
tr[F∗(jω)F(jω)]dω}

1
2 (Zhou & Doyle, 1998). In this case,

matrixD2 in (1) needs to be zero in order to guarantee the existence
of the H2 norm of network (3).

Similar to the H∞ case, the suboptimal H2 control problem is
stated as follows: for a given γ̃ > 0, find a controller (2) such that
(i) network (3) is asymptotically stable; (ii) ‖Tωz‖2 < γ̃ . The H2
performance limit of network (3) is theminimal‖Tωz‖2 of (3) under
controller (2).

Theorem 8. For a given γ̃ > 0, network (3) is asymptotically stable
with ‖Tωz‖2 < γ̃ , if and only if the N systems in (4) with D2 = 0

are simultaneously asymptotically stable and
∑N

i=1 ‖Tω̂i ẑi‖
2
2 < γ̃ ,

where Tω̂i ẑi , i = 1, . . . ,N, are the transfer function matrices of the
systems in (4).

Proof. It follows readily from (8) and the definition of the H2
norm. �

The H2 performance region is defined as follows.

Definition 2. The region Sγ̃ of the parameter σ ∈ R+, such that
system (10) with D2 = 0 is asymptotically stable, with ‖Tωizi‖2 <
γ̃

√
N
, is called the H2 performance region with performance index γ̃

of network (3).

According to Theorem 8, one has the following corollary.

Corollary 9. Network (3) with D2 = 0 is asymptotically stable and
‖Tωz‖2 < γ̃ , if cλi ∈ Sγ̃ , for i = 1, 2, . . . ,N.
Remark 6. Contrary to the H∞ case, the H2 performance region
is related to the number of agents in the network and using H2
performance region to characterize theH2 performance of network
(3) involves certain conservatism. This is essentially due to the
inherent difference between the H2 and H∞ norms, and due to the
fact that, in the H2 case, the N systems in (4) are coupled with each
other, which thereby is more difficult to analyze.

The H2 performance region analysis can be discussed similarly to
Section 3, therefore is omitted here for brevity. The synthesis issue
is somewhat different, hence is further discussed below.

Lemma 10 (Zhou & Doyle, 1998). Let γ̃ > 0 and G(s) = C(sI −

A)−1B. Then, the following two statements are equivalent.

(1) A is stable and ‖G(s)‖2 < γ̃ .
(2) there exists an X > 0 such that

AX + XAT
+ BBT < 0, tr(CXCT ) < γ̃ 2.

Theorem 11. For a given γ̃ > 0, there exists a distributed
controller (2) having an unboundedH2 performance region if and only
if there exist a matrix Q > 0 and a scalar τ̃ such that

AQ + QAT
− τ̃B1BT

1 + D1DT
1 < 0,

tr(CQCT ) <
γ̃ 2

N
.

(17)

Moreover, the unbounded H2 performance regionSγ̃ contains [τ̃ , ∞).

Proof. (Necessity) Similar to the proof of Theorem 6, if network
(3) has an unbounded H2 performance region, then there exists
a matrix K such that A + B1K is Hurwitz and ‖C(sI − A −

B1K)−1D1‖2 <
γ̃

√
N
, which is equivalent to that there exists amatrix

Q > 0 such that

(A + B1K)Q + Q (A + B1K)T + D1DT
1 < 0,

tr(CQCT ) <
γ̃ 2

N
.

Let V = KQ . Then, the above inequality becomes

AQ + QAT
+ B1V + V TBT

1 + D1DT
1 < 0,

tr(CQCT ) <
γ̃ 2

N
,

which, by Finsler’s Lemma, is equivalent to that there exist amatrix
Q > 0 and a scalar τ̃ > 0 such that (17) holds.
(Sufficiency) Take K = −

1
2B

T
1Q

−1. For cλi ≥ τ̃ , i = 1, 2, . . . ,N ,
one has

(A + cλiB1K)Q + Q (A + cλiB1K)T + D1DT
1

= AQ + QAT
− cλiB1BT

1 + D1DT
1 < 0,

tr(CQCT ) <
γ̃ 2

N
,

which together imply that ‖C(sI − A − cλiB1K)−1D1‖2 <
γ̃

√
N
,

i = 1, . . . ,N , i.e., controller (2) with K chosen as above has an
unbounded H2 performance region containing [τ̃ , ∞). �

Corollary 12. The H2 performance limit γ̃min of network (3) under
controller (2) is given by the optimization problem:

minimize γ̃
subject to LMI (17), with Q > 0, τ̃ > 0, γ̃ > 0. (18)

Proof. Solving the optimization problem (18) gives solutions γ̃min
and τ̃min. Select c such that cλi ≥ τ̃min, for i = 1, 2, . . . ,N . Then,
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controller (2) with K given as in the proof of Theorem 11 yields
‖Tω̂i ẑi‖2 =

γ̃min√
N
, for i = 1, 2, . . . ,N , which by Theorem 8 imply

that γ̃min is the H2 performance limit of network (3). �

Remark 7. The H2 performance limit of network (3) under
controller (2) is related to two factors: the minimal H2 norm of
a single agent (1) by using the state feedback controller ui = Fxi
and the number of agents in the network. Contrary to the H∞ case,
the H2 performance limit of network (3) scales with the size of the
network.

Algorithm 2. For any γ̃ ≥ γ̃min, where γ̃min is given by (16), the
controller (2) solving the distributed H2 control problem can be
constructed as follows:

(1) Solve LMI (17) for obtaining a solution: Q > 0 and τ̃ > 0.
(2) Choose the feedback gain matrix K = −

1
2B

T
1Q

−1.
(3) Select the coupling strength c > c̃th, with c̃th =

τ̃
min

i=1,...,N
λi
, where

λi, i = 1, 2, . . . ,N , are the eigenvalues of Lm.

5. Conclusions

This paper has studied the distributed H2 and H∞ control
problems of multi-agent systems with linear or linearized
dynamics. The distributed controllers have been designed for
the two problems, respectively, based on the relative states of
neighboring agents and a subset of absolute states of the agents in
the network. The novel notions of H∞ and H2 performance regions
have been introduced and analyzed. A necessary and sufficient
condition for the existence of a controller having an unbounded
H∞ performance region has been derived, which ensure better
robustness of the controller and the controlled network. A simple
procedure for suboptimalH∞ andH2 controller synthesis has been
also presented. The exact H∞ performance limit of the network
under the distributed controller is equal to the minimal H∞

norm of an individual agent achieved by using the state feedback
controller. It has been shown that, contrarily to theH∞ case, theH2
performance limit scales with the size of the network.
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