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a b s t r a c t

In this paper, an indirect adaptive fuzzy control scheme is presented for a class of multi-
input andmulti-output (MIMO) nonlinear systemswhose dynamics are poorly understood.
Within this scheme, fuzzy systems are employed to approximate the plant’s unknown
dynamics. In order to overcome the controller singularity problem, the estimated gain
matrix is decomposed into theproduct of onediagonalmatrix and twoorthogonalmatrices,
a robustifying control term is used to compensate for the lumped errors, and all parameter
adaptive laws and robustifying control term are derived based on Lyapunov stability
analysis. The proposed scheme guarantees that all the signals in the resulting closed-loop
systemare uniformlyultimately bounded (UUB).Moreover, the tracking errors canbemade
small enough if the designed parameter is chosen to be sufficiently large. A simulation
example is used to demonstrate the effectiveness of the proposed control scheme.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In practical control engineering, fuzzy system-based adaptive control methodologies have received much attention,
emerging as promising approaches for controlling highly uncertain and nonlinear dynamical systems. Based on the universal
approximation theorem [1], during the last two decades, several adaptive fuzzy control schemes have been developed
for a class of single-input single-output (SISO) nonlinear uncertain systems [2–6], and multi-input multi-output (MIMO)
nonlinear uncertain systems are investigated in [7–13]. Stability analysis in such schemes is performed by using the
Lyapunov synthesis method.

In order to meet control objectives, conceptually, there exist two distinct approaches to design a fuzzy adaptive control
system: direct and indirect schemes. In the direct method, a fuzzy system is used to describe the control action and the
parameters of the fuzzy system are adjusted directly to meet the control objective [1,4,5,12,13]. Unlike the direct schemes,
the indirect adaptive approach uses fuzzy systems to estimate the plant dynamics and then a control law is designed based
on these estimates [1–3,6–11,13]. In indirect adaptive schemes, the possible controller singularity problem usually meet.
To avoid this problem, for MIMO systems, in [7,8], the authors suggest using a projection algorithm to keep the estimated
parameters inside a feasible set, but this solution has some disadvantages [10,11]. In [9,13] the authors do not take account
of the controller singularity problem, they implicitly assume that the estimated control gain matrix is always nonsingular.
In [11], for the certainty control term, authors use the regularized inverse of the estimated control gain matrix instead of
its inverse to avoid the possible singularity problem, and design a robustifying term to compensate for the approximation
errors, but it is possible for the robustifying term not to be well-defined. Another way to avoid this problem is to use the
direct adaptive control schemes [12]. However, this approach seems to require that the gainmatrix satisfiesmore restrictive
assumptions [11].

Moreover, a key assumption in the developed adaptive fuzzy control schemes [11,12] is that the control gain matrix is
positive definite, however, in [11,12], the main care the authors take into account is the sign of the gain matrix instead

∗ Corresponding author.
E-mail address: shiwuxi@163.com (W. Shi).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.07.050

http://dx.doi.org/10.1016/j.camwa.2011.07.050
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:shiwuxi@163.com
http://dx.doi.org/10.1016/j.camwa.2011.07.050


2844 W. Shi et al. / Computers and Mathematics with Applications 62 (2011) 2843–2853

of the symmetry. In this paper, motivated by the symmetric matrix decomposition technique [14], an indirect adaptive
fuzzy control scheme is developed for a class of uncertain MIMO nonlinear systems. Within this scheme, the fuzzy systems
are used to approximate the plant’s unknown dynamics, in order to avoid the possible controller singularity problem, the
estimated symmetric gain matrix is decomposed into the product of one diagonal matrix and two orthogonal matrices, and
a robust controller is used to compensate the lumped errors. The proposed design scheme guarantees that all the signals
in the resulting closed-loop system are UUB. Moreover, the tracking errors can be reduced by adjusting the value of the
designed parameter.

The rest of the paper is organized as follows. In Section 2, we describe the plant dynamics, control objectives, and a brief
description of fuzzy systems. In Section 3 the suggested indirect adaptive fuzzy control schemes are presented while in
Section 4, simulation results are provided to demonstrate the effectiveness of the method. Finally, conclusions are drawn in
Section 5.

Throughout this paper, ‖.‖ indicates the Euclidean norm.

2. Problem formulation and preliminaries

Consider a MIMO nonlinear dynamic system represented by the following form

y(r1)
1 = f1(x) +

p−
j=1

g1j(x)uj,

...

y(ri)
i = fi(x) +

p−
j=1

gij(x)uj

(1)

where x = [y1, ẏ1, . . . , y
(r1−1)
1 , . . . , yp, ẏp, . . . , y

(rp−1)
p ]

T
∈ Rl is the system state vector, which is assumed available for

measurement and l =
∑p

i=1 ri, u = [u1, . . . , up]
T

∈ Rp and y = [y1, . . . , yp]T ∈ Rp are the system input vector and output
vector, respectively, and fi(x), i = 1, 2, . . . , p and gij(x), i, j = 1, 2, . . . , p, are continuous unknown smooth nonlinear
functions.

Let us denote

y(r)
= [y(r1)

1 , . . . , y(rp)
p ]

T ,

F(x) = [f1(x), . . . , fp(x)]T ,

G(x) =

g11(x) · · · g1p(x)
...

. . .
...

gp1(x) · · · gpp(x)

 .

Then, Eq. (1) can be written in the following compact form

y(r)
= F(x) + G(x)u (2)

where F(x) ∈ Rp and G(x) ∈ Rp×p.
The controllability of (1) requires that G(x) is nonsingular for all x ∈ U ⊂ Rl, accordingly, throughout this paper wemake

the following assumption:

Assumption 1 ([11–13]). For all x ∈ U,G(x) is positive definite, then there exists unknown σ0 > 0, σ0 ∈ R such that
G(x) ≥ σ0Ip, here Ip is the p × p identity matrix.

The objective of this paper is to design an indirect adaptive fuzzy controller u(t) such that the system output y follows
the reference signal ym = [ym1, ym2, . . . , ymp]

T , i.e., the tracking error ei(t) = ymi(t) − yi(t) = 0 (i = 1, . . . , p), while all
the signals in the derived closed-loop system remain bounded.

Let us define the filtered tracking errors as

si =


d
dt

+ λ1

r1−1

e1(t), λ1 > 0

...

sp =


d
dt

+ λp

rp−1

ep(t), λp > 0.

(3)
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Eq. (3) can be written as follows

si = e(r1−1)
i + (ri − 1)λie

(ri−2)
i + · · · + (ri − 1)λri−2

i ėi + λ
ri−1
i ei (i = 1, 2, . . . , p). (4)

Remark 1. From (4), if we choose the appropriate λi such that the roots of the equationHi(s) = sr1−1
+(ri−1)λisri−2

+· · ·+

(ri − 1)λri−2
i s + λ

ri−1
i = 0 (i = 1, 2, . . . , p) are all in the left-half complex plane, it follows that ei(t) → 0 asymptotically

as si(t) → 0. Thus, the problem of tracking the ri-dimensional vector ymi can be replaced by a 1st-order stabilization
problem in the scalar si. Moreover, if |si(t)| ≤ Ψi, ∀t ≥ 0, then |ei(t)| ≤

Ψi

λ
r1−1
i

, ∀t ≥ 0, within a short time-constant

(ri − 1)/λi (i = 1, 2, . . . , p) [15].

So, the objective of this paper becomes the design of a control law to force the filtered tracking error si(t) → 0, or to be
ultimately bounded.

From (3), it is obvious that the expression of si contains e
ri−1
i , one only needs to differentiate si once for the input uj to

appear. Differentiating si with respect to time yields

ṡ1 = v1 − f1(x) −

p−
j=1

g1j(x)uj

...

ṡp = vp − fp(x) −

p−
j=1

gpj(x)uj

(5)

where

v1 = y(r1)
m1 + β1,r1−1e

(r1−1)
1 + · · · + β1,1ė1

...

vp = y(rp)
mp + βp,rp−1e

(rp−1)
p + · · · + βp,1ėp

(6)

with

βi,j =
(ri − 1)!

(ri − j)!(j − 1)!
λ
ri−j
i , i = 1, . . . , p, j = 1, . . . , ri − 1.

Denote

s = [s1, . . . , sp]T

v = [v1, . . . , vp]
T .

Then Eq. (5) can be written in the following form

ṡ = v − F(x) − G(x)u. (7)

If the nonlinear functions fi(x) and gij(x) are known, then the following control law

u = G−1(x)(−F(x) + v + K0s) (8)

where K0 = diag[k01, . . . , k0p] with k0i > 0, can be used to meet the control objective. Indeed, substituting (8) into (7),
we get

ṡ = −K0s. (9)

From which we can conclude that si → 0 as t → ∞.
From the aforementioned analysis, we know that the control law (8) is easily implemented in the case where F(x)

and G(x) are known. However, in this paper, these nonlinear functions are unknown, the above control law (8) cannot
be implemented. In this case, we assume that they can be approximated by the fuzzy systems. In the following, the fuzzy
systems considered in this paper are discussed briefly. The used fuzzy systems are characterized by a set of fuzzy IF-THEN
rules in the following form [1]

R(l)
: IF x1 is F l

1 and · · · and xnis F l
n, THEN y is Gl

where x = [x1, . . . , xn]T and y are the input and output of the fuzzy logic system, respectively, F l
i and Gl are fuzzy sets, for

l = 1, . . . ,m.
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By using the strategy of singleton fuzzification, product inference and center-average defuzzification, the output of the
fuzzy system is given as follows

y =

m∑
j=1

yj


n∏
i=1

µF ji
(xi)


m∑
j=1

n∏
i=1

µF ji
(xi)

(10)

where yj is the point at which the membership function of Gl achieves its maximum value. By introducing the concept of
fuzzy basis function vector ξ(x), Eq. (10) can be rewritten as

y(x) = f̂ (x|θ) = θ T ξ(x) (11)

where θ = [y1, . . . , ym]
T , ξ(x) = [ξ 1(x), . . . , ξm(x)]T with ξ j(x) =

∏n
i=1 µ

F ji
(xi)∑m

j=1
∏n

i=1 µ
F ji

(xi)
.

According to the universal approximation theorem [1], the fuzzy system (11) is able to approximate any continuous
nonlinear function on a compact set to an arbitrary degree of accuracy provided that enough number of rules are considered.
In following, it is assumed that the structure of the fuzzy system and the fuzzy basis function parameters are properly
specified in advance by the designer. This means that the designer decision is needed to determine the structure of the
fuzzy system, and the consequent parameters must be calculated by adaptive laws.

3. Design of indirect adaptive fuzzy control and stability analysis

Since fi(x) and gij(x) in (1) are unknown, we assume that they can be approximated by the fuzzy systems in the form of
(11) as follows

f̂i(x|θfi) = θ T
fi ξfi(x), i = 1, . . . , p,

ĝij(x|θgij) = θ T
gijξgij(x), i, j = 1, . . . , p

where ξfi(x) and ξgij(x) are fuzzy basis function vectors, θfi and θgij are parameter vectors of each fuzzy system designed later.
Denote

F̂(x|θf ) = [f̂1(x|θf 1), . . . , f̂p(x|θfp)]T

and fromAssumption 1,we know thatG(x) is symmetric, thus it is reasonable to assume that its fuzzy approximation Ĝ(x|θg)
is symmetric, too, the matrix Ĝ(x|θg) can be denoted as

Ĝ(x|θg) =


ĝ11(x|θg11) ĝ12(x|θg12) · · · ĝ1p(x|θg1p)
ĝ12(x|θg12) ĝ22(x|θg22) · · · ĝ2p(x|θg2p)

...
. . .

...
...

ĝ1p(x|θg1p) ĝ2p(x|θg2p) · · · ĝpp(x|θgpp)


Remark 2. Compared with this paper, in [11–13], the gain matrix G(x) is positive definite symmetric, however, the
symmetry of the estimated gain matrix Ĝ(x|θg) is not considered.

Now, let us consider a certainty control law as follows

uc = Ĝ−1(x|θg)(−F̂(x|θf ) + v + K0s). (12)

This control law results from (8) by using the adaptive fuzzy approximations F̂(x|θf ) and Ĝ(x|θg) instead of the functions
F(x) and G(x), respectively.

Since the matrix Ĝ(x|θg) is generated online by the estimation of the parameters θg , the control law (12) is not well-
definedwhen the estimated gainmatrix Ĝ(x|θg) is singular. In order to overcome this problem,we use the symmetricmatrix
decomposition technique. Since matrix Ĝ(x|θg) is symmetric, it can be decomposed as follows [14]

Ĝ(x|θg) = P−1DλP (13)

where P is a orthogonal matrix, Dλ = diag[λ1, . . . , λp], here λi is the characteristic root of matrix Ĝ(x|θg).
We modify the equivalent control law (12) as follows

uc = [Ĝ(x|θg) + P−1DλεP]
−1(−F̂(x|θf ) + v + K0s) (14)

where Dλε = diag[ε1sign(λ1), . . . , εpsign(λp)] with εi > 0, and sign(λi) =


1 if λi ≥ 0

−1 if λi < 0 .
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Since Ĝ(x|θg) + P−1DλεP = P−1(Dλ + Dλε)P , it is obvious that the matrix Ĝ(x|θg) + P−1DλεP is nonsingular, therefore
the controller (14) is always well-defined.

Due to F(x) being approximated by F̂(x|θf ),G(x) is approximated by Ĝ(x|θg)+ P−1DλεP , so the approximation errors are
unavoidable. In order to compensate for these errors, we append to the controller (14) a robust control term ur

u = uc + ur (15)
where ur is to be designed later.

Substituting (15) into (7) yields

ṡ = −K0s + (F̂(x|θfi) − F(x)) + (Ĝ(x|θgij) − G(x))uc + P−1DλεPu − Gur . (16)
Let us define the optimal approximation parameters θ∗

fi and θ∗

gij as follows:

θ∗

fi = argmin
θfi∈Ωfi

[sup
x∈U

|f̂i(x|θfi) − fi(x)|]

θ∗

gij = argmin
θgij∈Ωgij

[sup
x∈U

|ĝij(x|θgij) − gij(x)|]

where Ωfi and Ωgij are the compact set of allowable controller parameters. Define the parameter errors
φfi = θfi − θ∗

fi , φgij = θgij − θ∗

gij,

and
ωfi = f̂i(x|θ∗

fi ) − fi(x),

ωgij = ĝij(x|θ∗

gij) − gij(x)
as the minimum approximation errors.

In this paper, we assume that the used fuzzy system does not violate the universal approximation theorem [1] on the
compact set U , which is assumed large enough so that state variables remain within U under closed-loop control. So it is
reasonable to assume that the minimum approximation errors are bounded for all x ∈ U , accordingly, we can make the
following assumption:

Assumption 2. For i, j = 1, 2, . . . , p, ωfi, ωgij are bounded, respectively.

With above definition, Eq. (16) can be written as follows

ṡ = −K0s + Ξf Φf + ΞgΦg + P−1DλεPuc + Ωufgωfg − Gur (17)
where

Ξf =


ξ T
f 1(x)

ξ T
f 2(x)

. . .

ξ T
fp(x)

 ,

Ξg =


Ξg11

Ξg22
. . .

Ξgpp


with

Ξg11 = [ξ T
g11(x)uc1, . . . , ξ

T
g1p(x)ucp],

Ξg22 = [ξ T
g12(x)uc1, . . . , ξ

T
g2p(x)ucp],

Ξgpp = [ξ T
g1p(x)uc1, . . . , ξ

T
gpp(x)ucp]

Φf = [φT
f 1, φ

T
f 2, . . . , φ

T
fp]

T ,

Φg = [φT
g11, . . . , φ

T
g1p, φ

T
g12, . . . , φ

T
g2p, φ

T
g1p, . . . , φ

T
gpp]

T

ωfg = [ωf 1, ωg11, . . . , ωg1p, . . . , ωfp, ωg1p, . . . , ωgpp]
T

Ωufg =


ufg

ufg
. . .

ufg


with ufg = [1, uc1, . . . , ucp].
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In order to compensate for the lumped error terms in (17), the robust term ur is designed as

ur = βs[‖Dλε‖
2
‖uc‖

2
+ ‖Ωufg‖

2
] (18)

where β is a positive designed parameter.
Denote

Θf = [θ T
f 1, . . . , θ

T
fp]

T ,

Θg = [θ T
g11, . . . , θ

T
g1p, θ

T
g12, . . . , θ

T
g2p, θ

T
g1p, . . . , θ

T
gpp]

T .

The adaptation laws for Θf and Θg are defined as follows:

Θ̇f = −γf Ξ
T
f s, (19)

Θ̇g = −γgΞ
T
g s (20)

where γf > 0, γg > 0.

Remark 3. From (20), if i < j, then there exist two values for θgij, them are generally unequal, so we average these two
values to obtain the true value of θgij.

The property of the designed control scheme is summarized by the following theorem.

Theorem 1. Given the plant defined by (1) satisfying Assumptions 1 and 2, the control law (15) with adaptation
law (19)–(20) will ensure that all signals in the closed-loop system are uniformly ultimately bounded, and the tracking errors
can be made small enough if the designed parameter β is chosen to be sufficiently large.

Proof. Consider the following Lyapunov function candidate:

V =
1
2
sT s +

1
2γf

ΦT
f Φf +

1
2γg

ΦT
g Φg . (21)

The time derivative of V is

V̇ = sT ṡ +
1
γf

Φ̇T
f Φf +

1
γg

Φ̇T
g Φg

= sT (−K0s + Ξf Φf + ΞgΦg + P−1DλεPuc + Ωufgωfg − Gur) +
1
γf

Φ̇T
f Φf +

1
γg

Φ̇T
g Φg . (22)

Using (19) and (20), we have

sTΞf Φf +
1
γf

Φ̇T
f Φf + sTΞgΦg +

1
γg

Φ̇T
g Φg = 0. (23)

Since matrix P is an orthogonal matrix, ‖P−1DλεP‖ = ‖Dλε‖. With (18), we have

sT (P−1DλεPuc + Ωufgωfg − Gur) ≤ ‖s‖[‖Dλε‖ ‖uc‖ + ‖s‖ ‖Ωufg‖ ‖ωfg‖] − βσ0‖s‖2
[‖Dλε‖

2
‖uc‖

2
+ ‖Ωufg‖

2
]. (24)

Here, the inequality sTGs ≥ σo‖s‖2 is used which is true because G(x) satisfies Assumption 1.
Using the inequality 2ab − b2 ≤ a2, we have

‖s‖ ‖Dλε‖ ‖uc‖ − βσ0‖s‖2
‖Dλε‖

2
‖uc‖

2
≤

1
4βσ0

(25)

‖s‖ ‖Ωufg‖ ‖ωfg‖ − βσ0‖s‖2
‖Ωufg‖

2
≤

‖ωfg‖
2

4βσ0
(26)

using (25) and (26), (24) becomes

sT (P−1DλεPuc + Ωufgωfg − Gur) ≤
1

4βσ0
[1 + ‖ωfg‖

2
]. (27)

Substituting (23) and (27) into (22) yields

V̇ ≤ − min
1≤i≤p

{K0i}‖s‖2
+

1
4βσ0

[1 + ‖ωfg‖
2
]. (28)
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From Assumption 2, we know that ‖ωfg‖ is bounded, so the constant ρfg > 0 exists such that ‖ωfg‖
2

≤ ρfg . Then, one can
guarantee that V̇ is negative as long as s is outside the compact set Ω defined as

Ω = {s| ‖s‖ ≤ Ψ } (29)

where Ψ =


1+ρfg

4βσ0 min1≤i≤p{K0i}
.

According to a standard Lyapunov theorem, we conclude that s, Φf , Φg are all uniformly ultimately bounded, and s will
converge to Ω . Therefore, si will converge to Ω . Moreover, we can obtain that [15]

|ei(t)| ≤
Ψ

λ
r1−1
i

, ∀t ≥ 0 (30)

within a short time-constant (ri − 1)/λi (i = 1, 2, . . . , p).
From (30), it is obvious that tracking error ei(t) can bemade small enoughbyproperly choosing sufficiently large designed

parameter β . �

4. Simulation

Consider a two-link rigid robot manipulator moving in a horizontal plane. The dynamic equations of such a system are
given by [11,12,15][

q̈1
q̈2

]
=

[
M11 M12
M21 M22

]−1
[

u1
u2

]
−

[
−hq̇2 −h(q̇1 + q̇2)
hq̇1 0

] [
q̇1
q̇2

]
where

M11 = a1 + 2a3 cos(q2) + 2a4 sin(q2),
M22 = a2,
M12 = M21 = a2 + a3 cos(q2) + a4 sin(q2),
h = a3 sin(q2) − a4 cos(q2)

with

a1 = I1 + m1l2c1 + Ie + mel2ce + mel21,

a2 = Ie + mel2ce,
a3 = mel1lce cos(δe),
a4 = mel1lce sin(δe).

In the simulation, the following parameter values are used:m1 = 1,me = 2, l1 = 1, lc1 = 0.5, lce = 0.6, I1 = 0.12, Ie =

0.25, δe = 300.
Let y = [y1, y2]T = [q1, q2]T , u = [u1, u2]

T , x = [q1, q̇1, q2, q̇2]T and

F(x) =

[
f1(x)
f2(x)

]
= −M−1

[
−hq̇2 −h(q̇1 + q̇2)
hq̇1 0

] [
q̇1
q̇2

]
,

G(x) =

[
g11(x) g12(x)
g21(x) g22(x)

]
= M−1

then, the robot system can be expressed as follows

ÿ = F(x) + G(x)u

which is in the input–output form given by (2). Since the matrixM is positive definite, then G(x) = M−1 is positive definite.
The control objective is to force the system outputs q1 and q2 to track the sinusoidal desired trajectories ym1(t) = sin(t)
and ym2(t) = sin(t), respectively. Within this simulation, the nonlinear functions F(x) and G(x) are assumed completely
unknown, two fuzzy systems in the form of (11) are used to approximate the elements of F(x), and three are used to
approximate the elements of G(x). The fuzzy systems used to describe F(x) have q1(t), q̇1(t), q2(t) and q̇2(t) as inputs,
and the ones used to describe G(x) have q1(t) and q2(t) as inputs.
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Fig. 1. Position tracking curves of link 1: ym1(−), y1(−−).
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Fig. 2. Position tracking curves of link 2: ym2(−), y2(−−).
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Fig. 3. Position tracking curves of link 1: ym1(−), y1(−−).
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Fig. 4. Position tracking curves of link 2: ym2(−), y2(−−).
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Fig. 5. Velocity tracking curves of link 1: ẏm1(−), ẏ1(−−).

In the simulation, the fuzzy membership functions are defined for every variable q1, q̇1, q2, q̇2 as follows [11]:

µF1i
(xi) = exp


−

1
2


xi + 1.25

0.6

2


,

µF2i
(xi) = exp


−

1
2

 xi
0.6


,

µF3i
(xi) = exp


−

1
2


xi − 1.25

0.6

2


.

Let the initial conditions be x(0) = [0.5, 0, 0.25, 0]T , and each element of θf 1(0), θf 2(0), θg11(0), θg12(0) and θg22(0) are
all chosen randomly in the interval [−0.5, 0.5].

The design parameters are chosen as k01 = 4, k02 = 4, γf = 0.5, γg = 0.5, ε1 = 0.1, ε2 = 0.1, λ1 = 4, λ2 = 4.
In order to highlight the effectiveness of the proposed control scheme, we simulate the control design with the designed

parameter β = 0.05 and β = 0.5, the position tracking results for the first link and the second link with β = 0.05 are
shown in Figs. 1 and 2, respectively, and the least mean square error of e1(t) is 0.0033, and e2(t) is 0.0012, those for the first
link and the second link with β = 0.5 are shown in Figs. 3 and 4, respectively, and the least mean square error of e1(t) is
0.0018, and e2(t) is 0.0005. The velocity tracking results for the first link and the second link with β = 0.05 are shown in
Figs. 5 and 6, respectively, and the least mean square error of ė1(t) is 0.0397, and ė2(t) is 0.0089, those for the first link and
the second link with β = 0.5 are shown in Figs. 7 and 8, respectively, and the least mean square error of ė1(t) is 0.0267, and
ė2(t) is 0.0078.
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Fig. 6. Velocity tracking curves of link 2: ẏm2(−), ẏ2(−−).
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Fig. 7. Velocity tracking curves of link 1: ẏm1(−), ẏ1(−−).
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Fig. 8. Velocity tracking curves of link 2: ẏm2(−), ẏ2(−−).
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From these simulation results, it is obvious that the tracking errors can be reduced by increasing the value of designed
parameter β , and the tracking capability of the proposed control scheme is quite satisfactory.

5. Conclusions

In this paper, an indirect adaptive fuzzy control scheme is developed for a class of uncertain MIMO nonlinear systems.
Within this scheme, the fuzzy logic systems are used to approximate the plant’s unknown dynamics. By using the
symmetric matrix decomposition technique to avoid the possible controller singularity problem. The proposed design
scheme guarantees that all the signals in the resulting closed-loop system are UUB. Moreover, the tracking errors can be
made small enough if the designed parameter β is chosen to be sufficiently large.
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