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Neural-Network-Based Decentralized Adaptive
Output-Feedback Control for Large-Scale

Stochastic Nonlinear Systems
Qi Zhou, Peng Shi, Senior Member, IEEE, Honghai Liu, Senior Member, IEEE, and Shengyuan Xu

Abstract—This paper focuses on the problem of neural-
network-based decentralized adaptive output-feedback control for
a class of nonlinear strict-feedback large-scale stochastic systems.
The dynamic surface control technique is used to avoid the ex-
plosion of computational complexity in the backstepping design
process. A novel direct adaptive neural network approximation
method is proposed to approximate the unknown and desired
control input signals instead of the unknown nonlinear functions.
It is shown that the designed controller can guarantee all the
signals in the closed-loop system to be semiglobally uniformly
ultimately bounded in a mean square. Simulation results are
provided to demonstrate the effectiveness of the developed control
design approach.

Index Terms—Adaptive control, backstepping, decentralized
control, dynamic surface control, neural network (NN), stochastic
nonlinear systems.

I. INTRODUCTION

IN GENERAL, a large-scale system is often considered as
a set of interconnected dynamical systems, which comprise

some lower order subsystems [1]–[5]. The applications of large-
scale systems have been found in many practical systems, such
as power systems, computer network systems, and economic
systems [6], [7]. The decentralized adaptive technique is often
used to handle the control design problems of large-scale sys-
tems in that the knowledge of plant parameters and interactions
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among subsystems is often unknown and that the decentralized
design method depends only on local measurements [8].

In the past two decades, the decentralized control for large-
scale systems has received considerable attention (see, for
example, [9] and [10] and the reference therein). In [10], the
problem of decentralized dynamic surface control of large-scale
interconnected systems is investigated. However, most of the
results focused on deterministic large-scale systems. Recently,
a growing attention has been paid on stochastic systems due
to the fact that stochastic disturbance exists in many practical
systems and that it is often the source of instability (see, for
example, [11]–[25]). More recently, decentralized control de-
sign method has been applied to large-scale stochastic nonlinear
systems [26], [27], which is crucial for control theory, as well
as the synthesis of practical control systems.

On the other hand, the method of approximation-based adap-
tive fuzzy logic control or neural network (NN) control is useful
to approximate the unknown nonlinear functions in the systems,
such as the method that has been applied to single-input–single-
output nonlinear systems in [28]–[36], multiple-input–multiple-
output nonlinear systems in [37]–[40], and large-scale
nonlinear systems in [8] and [41]–[44]. In most of these re-
searches, adaptive fuzzy or neural controllers are constructed
recursively in the framework of the backstepping approach.
However, there exists the open problem of the explosion of
complexity in the backstepping design procedure. In order to
avoid this problem, the dynamic surface control technique was
first introduced in [44] for a class of strict-feedback nonlinear
systems with unknown functions. Then, this approach was ap-
plied to solve a class of nonlinear systems with periodic distur-
bances in [45] and a class of interconnected nonlinear systems
in [46]. The advantage of dynamic surface control is to avoid
repeatedly differentiating the virtual control variables by intro-
ducing a first-order filter in each step of backstepping design
procedure, which greatly simplifies the traditional backstepping
control algorithm. However, there are few results available on
neural-network-based decentralized adaptive output-feedback
control for large-scale stochastic nonlinear systems. Recently,
in [47], the authors investigated the problem of adaptive NN
output-feedback decentralized stabilization for a class of large-
scale stochastic nonlinear strict-feedback systems. However,
the design parameters will increase when the order of the
system increases, which motivates our research.

In this paper, the problem of adaptive decentralized NN con-
trol is investigated for large-scale stochastic nonlinear system.
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It is assumed that only the output of the system is measurable,
and there exist unknown nonlinear functions in the systems;
therefore an observer-based adaptive NN controller is designed
via the backstepping approach. The proposed control method
is independent of the prior knowledge of the basis functions
of the neural approximators. The main contributions of this
paper can be summarized as follows: 1) The approximation-
based direct adaptive NN method can solve the decentralized
control design problem of the large-scale stochastic nonlinear
systems, in which only one adaptation parameter is required,
and therefore, the computation burden is greatly reduced;
2) when the state variable information is unknown, decentral-
ized output-feedback control method is proposed to investigate
the control design issue for large-scale stochastic nonlinear sys-
tems; and 3) in the control design process, the dynamic surface
control approach can be utilized to simplify the problem of
the explosion of complexity in large-scale nonlinear stochastic
systems, which avoids repeated differentiation of the virtual
controller by introducing a first-order filter in each step of the
backstepping design procedure. It is shown that the proposed
control method can guarantee all the signals in the closed-
loop system to be semiglobally uniformly ultimately bounded.
Finally, a simulation result illustrates the effectiveness of the
proposed method. The rest of this paper is organized as follows.
The problem to be addressed is formulated in Section II, and
controller design is presented in Section III. A design example
is provided in Section IV to show the effectiveness of the
developed results, and we conclude this paper in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, the system descriptions are formulated in
Section II-A, and the definition of stochastic stability is pre-
sented in Section II-B. In Section II-C, the NN is used to
approximate the unknown nonlinear functions.

A. System Descriptions

Consider the following nonlinear stochastic system

dxi,1(t) = (xi,2(t) + fi,1 (x̄i,1(t)) + hi,1(y)) dt

+ gi,1(yi)
T dwi

...

dxi,ni−1(t) = (xi,ni
(t)+ fi,ni−1 (x̄i,ni−1(t))+ hi,ni−1(y)) dt

+ gi,ni−1(yi)
T dwi,

dxi,ni
(t) = (ui + fi,ni

(x̄i,ni
(t)) + hi,ni

(y)) dt

+ gi,ni
(yi)

T dwi,

yi(t) =xi,1(t) (1)

where x̄i,j(t)=[xi,1(t), xi,2(t), . . . , xi,j(t)]
T ∈Rj , i=1, 2,

. . . , N , j = 1, 2, . . . , ni − 1, and xi(t) = [xi,1(t), xi,2(t),

. . . , xi,ni
(t)]T ∈ Rni denote the state vectors of the system,

and ui ∈ R and yi ∈ R represent the input and output of the
system, respectively. fi,j(.) stands for the unknown smooth
system function with fi,j(0) = 0. hi,j(y) is the interconnection
between the ith subsystem and other subsystems. gi,j(.) is the
unknown vector-valued smooth functions with gi,j(0) = 0. wi

is an independent r-dimensional standard Wiener process.
Lemma 1: (Young’s Inequality). For ∀(x, y) ∈ R2, the fol-

lowing inequality holds:

xy ≤ εp

p
|x|p + 1

qεq
|y|q

where ε > 0, p > 1, q > 1, and (p− 1)(q − 1) = 1.
Assumption 1: For 1 ≤ i ≤ N and 1 ≤ j ≤ ni, there exists

positive unknown constant pi,j such that

|hi,j(y)| ≤ pi,j

N∑
l=1

ϕijl (|yl|)

B. Stochastic Stability

Consider the following stochastic system

dx(t) = f (x(t)) dt+ g (x(t)) dw (2)

where x ∈ Rn is the system state, w is an r-dimensional
standard Wiener process, and f : Rn → Rn and g : Rn → Rn

are locally Lipschitz functions and satisfy f(0) = g(0) = 0.
Definition 1: For any given V (x) ∈ C2, which is associated

with the stochastic system (2), the infinitesimal generator L is
defined as follows:

LV (x) =
∂V

∂x
f(x) +

1

2
Tr

{
g(x)T

∂2V

∂x2
g(x)

}

where Tr(A) is the trace of a matrix A.
Definition 2: The trajectory x(t) of system (2) is said

to be semiglobally uniformly ultimately bounded in pth
moment if, for some compact set Ω ∈ Rn and any initial state
x0 = x(t0), there exist constant ε > 0 and time constant T =
T (ε, x0), such that E[|x(t)|p] < ε for all t > t0 + T . In par-
ticular, when p = 2, it is usually called semiglobally uniformly
ultimately bounded in mean square.

Lemma 2: Consider the stochastic system (2). If there exist
functions V (x) ∈ C2, ᾱ1, and ᾱ2 ∈ K∞, and constants a0 > 0
and b0 > 0, such that

ᾱ1(x) ≤V (x) ≤ ᾱ2(x)

LV (x) ≤− a0V (x) + b0

then, there is a unique solution of system (2) for each x0 ∈ Rn,
and it satisfies

E [V (x)] ≤ V (x0)e
−a0t +

a0
b0

∀t > t0.

C. Approximation-Based NN

In this paper, approximation-based NN will be used to ap-
proximate the unknown smooth nonlinear functions. For any
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continuous unknown smooth nonlinear function f(Z) over a
compact set ΩZ ⊂ Rq, there exists NN W ∗TS(Z), such that
for a desired level of accuracy ε

f(Z) = W ∗TS(Z) + δ(Z), |δ(Z)| ≤ ε (3)

where W ∗ is the ideal constant weight vector and defined by

W ∗ = arg min
W∈RN

{
sup
Z∈ΩZ

∣∣f(Z)−WTS(Z)
∣∣}

δ(Z) is the approximation error, W = [w1, . . . , wN ]T is the
weight vector, and S(Z) = [s1(Z), . . . , sN (Z)]T is the basis
function vector with N being the number of the NN nodes and
N > 1. Radial basis function si(Z) = exp[−(Z − μi)

T (Z −
μi)/η

2
i ], i = 1, 2, . . . , N , where μi = [μi1, μi2, . . . μin]

T is the
center of the receptive field and ηi is the width of the Gaussian
function.

Remark 1: It is important to note that, although the NNs
are universal approximators, it can only be guaranteed within
some compact set in the controller design process. Therefore,
the stability condition obtained in this paper is semiglobal.

III. CONTROL DESIGN

In this section, an observer-based controller will be designed
to guarantee all the signals in the closed-loop system to be
semiglobally uniformly ultimately bounded. To estimate the
unmeasured states, we propose the following observer:

˙̂xi,j = x̂i,j+1 + li,j(yi − x̂i,1) (4)

where x̂i,ni+1 = ui. Let x̃i = xi − x̂i(x̂i = [x̂i,1, . . . , x̂i,ni
])

be the observer error, which satisfies the following equation:

dx̃i(t) = (Aix̃i(t) + fi (x̄(t)) + hi(y)) dt+ gi (yi(t))
T dwi

where

Ai =

⎡
⎢⎣

−li,1
... Ini−1

−li,ni
0 . . . 0

⎤
⎥⎦

fi (x̄(t)) = [ fi,1 (xi,1(t)) · · · fi,ni
(xi,ni

(t)) ]T

hi(y) = [hi,1(y) · · · hi,ni
(y) ]T

gi(yi) = [ gi,1 (y(t)) · · · gi,ni
(y(t)) ]T

and li,j is to be designed such that Ai is a strict Hurwitz matrix;
therefore, there exists matrix Pi > 0 satisfying

AT
i Pi + PiAi = −I. (5)

Then, the entire system can be expressed as

dx̃i(t) = (Aix̃i(t) + fi (x̄(t)) + hi(y)) dt

+ gi (yi(t))
T dwi,

dyi(t) = (x̂i,2(t) + x̃i,2(t) + fi,1 (yi(t)) + hi,1(y)) dt

+ gi,1(yi)
T dwi,

dx̂i,2(t) = (x̂i,3(t) + li,2x̃i,1(t)) dt,

...

dx̂i,ni
(t) = (ui + li,ni

x̃i,1(t)) dt

where the variables yi and x̂i,j are available for control design.
Now, we introduce a change of coordinates as follows:

zi,1 = yi

zi,j = x̂i,j − αi,j,f

where αi,j,f is the output of the first-order filter with αi,j−1 as
the input. According to Ito’s differentiation rule, one can derive

dzi,1 = (x̂i,2(t) + x̃i,2(t) + fi,1(yi) + hi,1(y)) dt

+ gi,1(yi)
T dwi

dzi,j = (x̂i,j+1(t) + li,j x̃i,1(t)− α̇i,j,f ) dt

× I = 1, . . . , N, j = 2, . . . .ni.

Remark 2: Note that since gi(yi) is a smooth function and
gi(0) = 0, gi(yi) can be expressed as

gi(yi) = yigi(yi) = [yiḡi,1(yi), . . . , yiḡi,ni
(yi)] .

In order to avoid the explosion problem of complexity, dynamic
surface control approach will be introduced in the backstepping
design procedure. In each step, a virtual control function α̂i

should be developed using an appropriate Lyapunov function
Vi, and the real control law ui will be designed at last. To begin
with the backstepping design procedure, let us define constant

θi = max
{
Ni,j

∥∥W ∗
i,j

∥∥2 : j = 0, 1, 2, . . . , ni

}
.

Let θ̂i be the estimate of θi. The feasible virtual control signal
is designed as

αi,j(Xi,j) = − 1

2a2i,j
z3i,j θ̂i, j = 1, . . . , ni − 1 (6)

where Xi,1 = xi,1 and Xi,j = (x̃i,1, x̂i,j , αi,j,f , α̇i,j,f )
T , j =

2, . . . , ni − 1.
Theorem 1: Consider the large-scale stochastic nonlinear

system in (1) with observer (4). If a control law is chosen as

ui = − 1

2a2i,ni

z3i,ni
θ̂i
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with the intermediate virtual control signals αi,j described as
(6) and the adaptive law defined as

˙̂
θi =

ni∑
j=1

ri
2a2i,j

z6i,j − ki,0θ̂i (7)

where positive constants ai,j(i = 1, . . . , N, j = 1, . . . , ni), ri,
and ki,0 are designed parameters, then the closed-loop system
can be guaranteed to be semiglobally stable in mean square.

Proof: Step i, 1: Consider the Lyapunov functional candi-
date as follows:

Vi,1 =
ai
2

(
x̃T
i Pix̃i

)2
+

1

4
z4i,1 +

1

2ri
θ̃2i

where ai > 0 and θ̃i = θi − θ̂i. By Definition 1, we have

LVi,1 = − aix̃
T
i Pix̃i‖x̃i‖2 + aix̃

T
i Pix̃i

(
2x̃T

i PI(fi + hi)
)

+
3

2
z2i,1gi,1(zi,1)

T gi,1(zi,1)

+ 2aiTr
{
gi(zi,1)

(
2Pix̃ix̃

T
i Pi

+x̃T
i Pix̃iPi)gi(zi,1

)T }
− 1

ri
θ̃i
˙̂
θi.

+ z3i,1 (x̂i,2 + x̃i,2 + fi,1(zi,1) + hi,1(y)) . (8)

As fi � (fi,1(x̄), . . . , fi,n(x̄))
T , and fi,j(x̄), where 1 ≤ i ≤ N

and 1 ≤ j ≤ ni, is an unknown function, by Lemma 1, for any
given εij0 > 0, there exists NN W ∗T

ij0Si,0(X0) such that

fi,j(X0) =W ∗T
ij0Si,0(X0) + δij0(X0),

|δij0(X0)| ≤ εij0

where X0 = x̄. Therefore

fi(X0) =W ∗T
i,0 Si,0(X0) + δi,0(X0)

‖δi,0(X0)‖ ≤ εi,0.

As ST
i,0Si,0 ≤ Ni,0 is used and Ni,0 is the dimension of Si,0,

and according to the definition of θ, we know ‖W ∗
i,0‖4S4

i,0 ≤
θ2. Therefore, the following inequality holds:

2ai
(
x̃T
i

)3 ‖Pi‖2fi =2aix̃
3
i ‖Pi‖2

(
W ∗T

i,0 Si,0(X0) + δi,0(X0)
)

≤ 3ai
2

‖x̃i‖4 +
ai
2
‖Pi‖8

∥∥W ∗
i,0

∥∥4 S4
i,0

+
3ai
2

‖x̃i‖4 +
ai
2
‖Pi‖8δ4i,0

=3ai‖x̃i‖4 +
ai
2
‖Pi‖8θ2 +

ai
2
‖Pi‖8ε4i,0.

(9)

According to Assumption 1, the following inequality holds:

2ai
(
x̃T
i

)3 ‖Pi‖2hi ≤ 2ai‖x̃i‖3‖Pi‖2‖hi‖

≤ 2ai‖x̃i‖3‖Pi‖2
ni∑
j=1

N∑
l=1

pi,jϕijl (|yl|)

≤ ai
2

ni∑
j=1

N∑
l=1

ϕ4
ijl (|yl|)

+
3ainiN

2
p

4
3
i,j‖Pi‖

8
3 ‖x̃i‖4. (10)

As ϕijl is a smooth function, there exists a smooth nonnegative

function η
(1)
ijl (yl) as follows:

ai
2

ni∑
j=1

N∑
l=1

ϕ4
ijl (|yl|) ≤

ni∑
j=1

∑
_l = 1Nη

(1)
ijl (yl)y

4
l

+

ni∑
j=1

N∑
l=1

4aiϕ
4
ijl(0) (11)

such that From Lemma 1, the terms in (8) lead to

2aiTr
{
gi(zi,1)

(
2Pix̃ix̃

T
i Pi + x̃T

i Pix̃Pi

)
gi(zi,1)

T
}

≤ 2aini

∥∥gi(zi,1) (2Pix̃ix̃
T
i Pi + x̃T

i Pix̃iPI

)
gi(zi,1)

T
∥∥

≤ 6aini
√
niz

2
i,1 ‖gi(zi,1)‖2 ‖Pi‖2‖x̃i‖2

≤ 3aini
√
ni

c2i,1
z4i,1 ‖ḡi(zi,1)‖4 + 3aini

√
nic

2
i,1‖Pi‖4‖x̃i‖4

(12)

z3i,1x̃i,2

≤ 3

4
c

4
3
i,2z

4
i,1 +

1

4c4i,2
x̃4
i,2

≤ 3

4
c

4
3
i,2z

4
i,1 +

1

4c4i,2
‖x̃i‖4

z3i,1hi,1(y)

≤
∣∣z3i,1∣∣ pi,1 N∑

l=1

ϕi1l (|yl|)

≤ 3

4
c

4
3
i,3p

4
3
i,1z

4
i,1 +

(
N∑
l=1

ϕi1l (|yl|)
)4

. (13)

As ϕi1l is a smooth function, there exists a smooth nonnegative
function η

(2)
i1l (yl), such that(

N∑
l=1

ϕi1l (|yl|)
)4

≤
N∑
l=1

η
(2)
i1l y

4
l + 8

(
N∑
l=1

ϕi1l(0)

)4

.

Therefore

z3i,1hi,1(y) ≤
3

4
c

4
3
i,3p

4
3
i,1z

4
i,1 +

N∑
l=1

η
(2)
i1l y

4
l

+ 8

(
N∑
l=1

ϕi1l(0)

)4

. (14)
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Combining (9)–(14) and (8), we have

LVi,1 ≤ −Πi‖x̃i‖4 + z3i,1(x̂i,2 + f̄i,1) +

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l

+

N∑
l=1,l �=i

η
(2)
i1l y

4
l +

ni∑
j=1

N∑
l=1

4aiϕ
4
ijl(0)

+ 8

(
N∑
l=1

ϕi1l(0)

)4

− 1

ri
θ̃i
˙̂
θi −

3

4
z4i,1

+
ai
2
‖Pi‖8θ2 +

ai
2
‖Pi‖8ε4i,0

where

Πi = aiλmin(Pi)− 3ai −
3ainiN

2
p

4
3
i,j‖Pi‖

8
3

− 3aini
√
nic

2
i,1‖Pi‖4 −

1

4c4i,2
,

f̄i,1(Xi,1) = fi,1(zi,1)

+

(
3

4
c

4
3
i,2 +

3

4
(ci,3pi,1)

4
3 +

ni∑
j=1

η
(1)
iji

+ η
(2)
i1i +

3aini
√
ni

c2i,1
‖ḡi(zi,1)‖4

+
3

2
ḡTi,1(zi,1)ḡi,1(zi,1) +

3

4

)
zi,1.

Taking the intermediate control signal α̂i,1(Xi,1) as

α̂i,1

(
Xi,1) = −(ki,1zi,1 + f̄i,1 + vi,1

(
z2i,1

)
zi,1

)
where ki,1 > 0. Then, we have

LVi,1 ≤ −Πi

∥∥x̃i‖4 + z3i,1(x̂i,2 − α̂i,1

)
− ki,1z

4
i,1

− vi,1
(
z2i,1

)
z4i,1 +

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
l=1,l �=i

η
(2)
i1l y

4
l

+

ni∑
j=1

N∑
l=1

4aiϕ
4
ijl(0) + 8

(
N∑
l=1

ϕi1l(0)

)4

− 1

ri
θ̃i
˙̂
θi

− 3

4
z4i,1 +

ai
2
‖Pi‖8θ2 +

ai
2
‖Pi‖8ε4i,0. (15)

From the definition of α̂i,1(Xi,1), we know that it is an un-
known nonlinear function because it contains fi,1(zi,1) and
cannot be implemented in practice. Therefore, according to (3),
for any given constant εi,1 > 0, there exists W ∗T

i,1 Si,1(Xi,1)
such that

α̂i,1(Xi,1) =W ∗T
i,1 Si,1(Xi,1) + δi,1(Xi,1),

|δI,1(Xi,1)| ≤ εi,1.

From the definition of θi and αi,1, we have

−z3i,1α̂i,1 = − z3i,1W
∗T
i,1 Si,1(Xi,1)− z3i,1δi,1(Xi,1)

≤ Ni,1

2a2i,1
z6i,1

∥∥W ∗
i,1

∥∥2 + 1

2
a2i,1 +

3

4
z4i,1 +

1

4
ε4i,1

≤ 1

2a2i,1
z6i,1θi +

1

2
a2i,1 +

3

4
z4i,1 +

1

4
ε4i,1 (16)

z3i,1αi,1 = − 1

2a2i,1
z6i,1θ̂i (17)

where the fact ST
i,1Si,1 ≤ Ni,1 can be used and Ni,1 is the

dimension of Si,1. Then, substituting (16) and (17) into (15)
yields

LVi,1 ≤ −Πi‖x̃i‖4 + z3i,1(x̂i,2 − αi,1)− ki,1z
4
i,1

− vi,1
(
z2i,1

)
z4i,1 +

1

ri
θ̃i

(
ri

2a2i,1
z6i,1 −

˙̂
θi

)

+

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
l=1,l �=i

η
(2)
i1l y

4
l +Δi,1. (18)

where

Δi,1 =
1

2
a2i,1 +

1

4
ε4i,1 +

ai
2
‖Pi‖8θ2 +

ai
2
‖Pi‖8ε4i,0

+

ni∑
j=1

N∑
l=1

4aiϕ
4
ijl(0) + 8

(
N∑
l=1

ϕi1l(0)

)4

.

Due to x̂i,2 = zi,2 + αi,2,f , (18) can be rewritten as

LVi,1 ≤ −Πi‖x̃i‖4 + z3i,1(zi,2 + αi,2,f − αi,1)

−ki,1z
4
i,1 − vi,1(z

2
i,1)z

4
i,1

+

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
l=1,l �=i

η
(2)
i1l y

4
l

+
1

ri
θ̃i

(
ri

2a2i,1
z6i,1 −

˙̂
θi

)
+Δi,1.

To avoid repeatedly differentiating αi,1, a new state variable
αi,2,f is introduced, and let αi,1 pass through a first-order filter
with time constant κi,2 to obtain αi,2,f as

κi,2α̇i,2,f + αi,2,f = αi,1, αi,2,f (0) = αi,1(0).

Let χi,2 = αi,2,f − αi,1 be the output error of this filter; then,
one has α̇i,2,f = −χi,2/κi,2 and

χ̇i,2 = α̇i,2,f − α̇i,1 = −χi,2

κi,2
+Bi,2(Xi,1)

where

Bi,2(Xi,1) =
3

2a2i,1
z2i,1żi,1θ̂i +

1

2a2i,1
z3i,1

˙̂
θi.
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Then, this implies

LVi,1 ≤ −Πi‖x̃i‖4 + z3i,1zi,2 + z3i,1χi,2

− ki,1z
4
i,1 − vi,1(z

2
i,1)z

4
i,1

+

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
l=1,l �=i

η
(2)
i1l y

4
l

+
1

ri
θ̃i

(
ri

2a2i,1
z6i,1 −

˙̂
θi

)
+Δi,1.

Step i,m: (2 ≤ m ≤ ni − 1). Choose the Lyapunov
functional

Vi,m = Vi,m−1 +
1

4
z4i,m +

1

4
χ4
i,m.

Similarly, we have

LVi,m ≤ −Πi‖x̃i‖4 +
m−1∑
j=1

z3i,jzi,j+1 +

m−1∑
j=1

z3i,jχi,j+1

−
m−1∑
j=1

ki,jz
4
i,j − vi,1

(
z2i,1

)
z4i,1

+

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
l=1,l �=i

η
(2)
i1l y

4
l

+
1

ri
θ̃i

⎛
⎝m−1∑

j=1

ri2a
2
i,jz

6
i,j −

˙̂
θi

⎞
⎠+Δi,m−1

−
m−1∑
j=1

(
χ4
i,j+1

κi,j+1
− χ3

i,j+1Bi,j+1(Xi,j)

)

+ z3i,m
(
x̂i,m+1 + f̄i,m(Xi,m)

)
− 3

4
z4i,m (19)

where

f̄i,m(Xi,m) = li,mx̃i,1 − α̇i,m,f +
3

4
zi,m.

Take the intermediate control signal α̂i,m(Xi,m) as

α̂i,m = −(ki,mzi,m + f̄i,m)

where ki,m > 0; then, adding and subtracting α̂i,m(Xi,m) in
(19), it yields

LVi,m ≤ −Πi‖x̃i‖4 +
m−1∑
j=1

z3i,jzi,j+1 +
m−1∑
j=1

z3i,jχi,j+1

−
m−1∑
j=1

ki,jz
4
i,j − vi,1

(
z2i,1

)
z4i,1

+

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
l=1,l �=i

η
(2)
i1l y

4
l

+
1

ri
θ̃i

⎛
⎝m−1∑

j=1

ri2a
2
i,jz

6
i,j −

˙̂
θi

⎞
⎠+Δi,m−1

−
m−1∑
j=1

(
χ4
i,j+1

κi,j+1
− χ3

i,j+1Bi,j+1(Xi,j)

)

+ z3i,m (x̂i,m+1 + α̂i,m(Xi,m))− 3

4
z4i,m. (20)

Similarly, α̂i,m(Xi,m) can be approximated by the NN
W ∗T

i,mSi,m(Xi,m) as

α̂i,m(Xi,m) =W ∗T
i,mSi,m(Xi,m) + δi,m(Xi,m),

|δi,m(Xi,m)| ≤ εi,m.

In addition,

−z3i,mα̂i,m ≤ 12a2i,mz6i,mθi +
1

2
a2i,m +

3

4
z4i,m +

1

4
ε4i,m (21)

z3i,mαi,m = − 1

2a2i,m
z6i,mθ̂i. (22)

Then, by substituting (21) and (22) into (20), we have

LVi,m ≤ −Πi‖x̃i‖4 +
m−1∑
j=1

z3i,jzi,j+1 +

m−1∑
j=1

z3i,jχi,j+1

−
m−1∑
j=1

ki,jz
4
i,j − vi,1

(
z2i,1

)
z4i,1

+

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
l=1,l �=i

η
(2)
i1l y

4
l

+
1

ri
θ̃i

⎛
⎝ m∑

j=1

ri
2a2i,j

z6i,j −
˙̂
θi

⎞
⎠+Δi,m

−
m−1∑
j=1

(
χ4
i,j+1

κi,j+1
− χ3

i,j+1Bi,j+1(Xi,j)

)

+ z3i,m (x̂i,m+1 + α̂) (23)

where

Δi,m =
1

2

m∑
j=1

a2i,j +
1

4

m∑
j=1

ε4i,j

+
ai
2
‖Pi‖8θ2 +

ai
2
‖Pi‖8ε4i,0

+

ni∑
j=1

N∑
l=1

4aiϕ
4
ijl(0) + 8

(
N∑
l=1

ϕi1l(0)

)4

.

Next, introduce a new variable αi,m+1,f , and let αi,m pass
through a first-order filter with the constant κi,m+1 to obtain
αi,m+1,f

κi,m+1α̇i,m+1,f + αi,m+1,f = αi,m, αi,m+1,f (0)=αi,m(0).
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Then, define

χi,m+1 = αi,m+1,f − αi,m (24)

as the output error of this filter; we have α̇i,m+1,f =
−(χi,m+1/κi,m+1) and

χ̇i,m+1
= α̇i,m+1,f − α̇i,m = −χi,m+1

κi,m+1
+Bi,m+1

(Xi,m).

where

Bi,m+1
(Xi,m) =

3

2a2i,m
z2i,mżi,mθ̂i +

1

2a2i,m
z3i,m

˙̂
θi.

Substituting (24) into (23) yields

LVi,m ≤ −Πi‖x̃i‖4 +
m−1∑
j=1

z3i,jzi,j+1 +

m−1∑
j=1

z3i,jχi,j+1

−
m−1∑
j=1

ki,jz
4
i,j − vi,1

(
z2i,1

)
z4i,1

+

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
l=1,l �=i

η
(2)
i1l y

4
l

+
1

ri
θ̃i

⎛
⎝ m∑

j=1

ri
2a2i,j

z6i,j −
˙̂
θi

⎞
⎠+Δi,m

−
m−1∑
j=1

(
χ4
i,j+1

κi,j+1
− χ3

i,j+1Bi,j+1(Xi,j)

)
.

Step i, ni: Consider the following Lyapunov functional:

Vi,ni
= Vi,ni−1 +

1

4
z4i,ni

+
1

4
χ4
i,ni

.

Similarly, we obtain

LVi,ni
≤ −Πi‖x̃i‖4 +

ni−1∑
j=1

z3i,jzi,j+1 +

ni−1∑
j=1

z3i,jχi,j+1

−
ni−1∑
j=1

ki,jz
4
i,j +

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l

+

N∑
l=1,l �=i

η
(2)
i1l y

4
l − vi,1(z

2
i,1)z

4
i,1

+Δi,ni−1 +
1

ri
θ̃i

⎛
⎝ni−1∑

j=1

ri
2a2i,j

z6i,j −
˙̂
θi

⎞
⎠

−
ni−1∑
j=1

(
χ4
i,j+1

κi,j+1
− χ3

i,j+1Bi,j+1(Xi,j)

)

+ z3i,n(ui + f̄i,ni
)− 3

4
z4i,ni

(25)

where

f̄i,ni
(Xi,n) = li,ni

x̃i,1 − α̇i,ni,f +
3

4
zi,ni

.

Take the intermediate control signal α̂i,ni
(Xi,ni

) as

α̂i,ni
= −(ki,ni

zi,ni
+ f̄i,ni

)

where ki,ni
> 0; then, adding and subtracting α̂i,ni

(Xi,ni
) in

(25) yields

LVi,ni
≤ −Πi‖x̃I‖4 +

ni−1∑
j=1

z3i,jzi,j+1 +

ni−1∑
j=1

z3i,jχi,j+1

−
ni∑
j=1

kI,jz
4
i,j +

ni∑
j=1

N∑
l=1,l �=I

η
(1)
ijl y

4
l

+

N∑
l=1,l �=i

η
(2)
i1l y

4
l − vi,1(z

2
i,1)z

4
i,1 +Δi,ni−1

+
1

ri
θ̃i

⎛
⎝ni−1∑

j=1

ri2a
2
i,jz

6
i,j −

˙̂
θi

⎞
⎠

−
ni−1∑
j=1

(
χ4
i,j+1

κi,j+1
− χ3

i,j+1Bi,j+1(Xi,j

)

+ z3i,n(ui − α̂i,ni
)− 3

4
z4i,ni

. (26)

Similar to the above steps, α̂i,ni
(Xi,ni

) can be approximated
by the NN W ∗T

i,ni
Si,ni

(Xi,ni
) as

α̂i,ni
(Xi,ni

) =W ∗T
i,ni

Si,ni
(Xi,ni

) + δi,ni
(XI,ni

),

|δi,ni
(Xi,ni

)| ≤ εi,ni
.

Following the similar procedure and by the definition of ui,
we have

− z3i,ni
α̂i,ni

≤ 1

2a2i,ni

z6i,ni
θi +

1

2
a2i,ni

+
3

4
z4i,ni

+
1

4
ε4i,ni

(27)

zi,ni
ui = − 1

2a2i,ni

z6i,ni
θ̂i. (28)

Then, by substituting (27) and (28) into (26), we have

LVi,ni
≤ −Πi‖x̃i‖4 +

ni−1∑
j=1

z3i,jzi,j+1 +

ni−1∑
j=1

z3i,jχi,j+1

−
ni∑
j=1

ki,jz
4
i,j +

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +Δi,ni

− vi,1(z
2
i,1)z

4
i,1 +

N∑
l=1,l �=i

η
(2)
i1l y

4
l

+
1

ri
θ̃i

⎛
⎝ ni∑

j=1

ri
2a2i,j

z6i,j −
˙̂
θi

⎞
⎠

−
ni−1∑
j=1

(
χ4
i,j+1

κi,j+1
− χ3

i,j+1Bi,j+1(Xi,j)

)
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where

Δi,ni
=

1

2

ni∑
j=1

a2i,j +
1

4

ni∑
j=1

ε4j

+
ai
2
‖Pi‖8θ2 +

ai
2
‖Pi‖8ε4i,0

+

ni∑
j=1

N∑
l=1

4aiϕ
4
ijl(0) + 8

(
N∑
l=1

ϕi1l(0)

)4

.

By the definition of ˙̂
θi, we can get

LVi,ni
≤ −Πi‖x̃i‖4 +

ni−1∑
j=1

z3i,jzi,j+1 +

ni−1∑
j=1

z3i,jχi,j+1

−
ni∑
j=1

ki,jz
4
i,j +

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +Δi,ni

− vi,1(z
2
i,1)z

4
i,1 +

N∑
l=1,l �=i

η
(2)
i1l y

4
l +

ki,0
ri

θ̃iθ̂i

−
ni−1∑
j=1

(
χ4
i,j+1

κi,j+1
− χ3

i,j+1Bi,j+1(Xi,j)

)
. (29)

By utilizing Lemma 1, we have

z3i,jzi,j+1 ≤ 3

4
z4i,j +

1

4
z4i,j+1,

z3i,jχi,j+1 ≤ 3

4
z4i,j +

1

4
χ4
i,j+1,∣∣χ3

i,j+1Bi,j+1

∣∣ ≤ 3

4
π

4
3
i B

4
3
i,j+1χ

4
i,j+1 +

1

4π4
i

,

θ̃iθ̂i = θ̃i(θi − θ̃i) ≤ −1

2
θ̃2i +

1

2
θ2i (30)

where πi > 0 is a design constant. Substituting (30) into (29),
one has

LVi,ni
≤ −Πi‖x̃i‖4 −

ni∑
j=1

(ki,j −
7

4
)z4i,j

− vi,1(z
2
i,1)z

4
i,1 −

ki,0
2ri

θ̃2i + Δ̄i,ni

+

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
l=1,l �=i

η
(2)
i1l y

4
l

−
ni−1∑
j=1

(
1

ki,j+1
− 1

4
− 3

4
π

4
3
i B

4
3
i,j+1

)
χ4
i,j+1,

Δ̄i,ni
=Δi,ni

+
ki,0
2ri

θ2i +
1

4π4
i

.

Choose the following Lyapunov functional candidate for the
whole system:

VN =

N∑
I=1

Vi,ni
.

According to Definition 1, one has

LVN ≤ −
N∑
i=1

Πi‖x̃i‖4 −
N∑
i=1

ni∑
j=1

(
ki,j −

7

4

)
z4i,j

+

N∑
i=1

Δ̄i,ni
−

N∑
i=1

vi,1(z
2
i,1)z

4
i,1 −

N∑
i=1

ki,0
2ri

θ̃2i

+

N∑
i=1

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
i=1

N∑
l=1,l �=i

η
(2)
i1l y

4
l

−
N∑
i=1

ni−1∑
j=1

(
1

ki,j+1
− 1

4
− 3

4
π

4
3
i B

4
3
i,j+1

)
χ4
i,j+1.

As

N∑
i=1

ni∑
j=1

N∑
l=1,l �=i

η
(1)
ijl y

4
l +

N∑
i=1

N∑
l=1,l �=i

η
(2)
i1l y

4
l

=

N∑
l=1

ni∑
j=1

N∑
i=1,i�=l

η
(1)
lji y

4
i +

N∑
l=1

N∑
i=1,i�=l

η
(2)
l1i y

4
i

=
N∑
i=1

ni∑
j=1

N∑
l=1,l �=i

η
(1)
lji y

4
i +

N∑
l=1

N∑
i=1,l �=i

η
(2)
l1i y

4
i .

Choose a smooth nonnegative function candidate vi,1 such that

N∑
i=1

vi,1(z
2
i,1)z

4
i,1 −

N∑
i=1

ni∑
j=1

N∑
l=1,l �=i

η
(1)
lji z

4
i,1

−
N∑
i=1

N∑
l=1,l �=i

η
(2)
l1i z

4
i,1 ≥ 0.

Then,

LVN ≤ −
N∑
i=1

Πi‖x̃i‖4 −
N∑
i=1

ni∑
j=1

(
ki,j −

7

4

)
z4i,j

−
N∑
i=1

ki,02riθ̃
2
i +

N∑
i=1

Δ̄i,ni

−
N∑
i=1

ni−1∑
j=1

(
1

ki,j+1
− 1

4
− 3

4
π

4
3
i B

4
3
i,j+1

)
χ4
i,j+1.

Let

Πi > 0

and denote

cI = min
1≤j≤ni

{
2Πi

aIλ2
max(Pi)

, 4

(
ki,j −

7

4

)
,

4

(
1

ki,j+1
− 1

4
− 3

4
π

4
3
i B

4
3
i,j+1

)
, ki,0

}
;

c = min{c1, . . . , cN},

d =

N∑
i=1

Δ̄i,ni
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then one has

LVN ≤ −cVN + d.

Therefore, the signals x̃i, zi, and θ̃i are bounded in probability.
As θi is a constant, θ̂i is also bounded in probability. Now,
it can be shown that all the signals in the closed-loop system
are semiglobally uniformly ultimately bounded in probability,
which are the desired results, and the proof is completed.

Remark 3: In the backstepping design procedure, the dy-
namic surface control technique is successfully applied to large-
scale stochastic nonlinear systems. In the controller design
process, the repeated differentiation of virtual control αi is
avoided by replacing αi with α̇i+1f , and αi+1f is defined by
a first-order filter with αi as input.

Remark 4: In most of the neural adaptive control design
process, the number of the adaptation parameters depends on
the number of the NN nodes. Consequently, if a system contains
a large number of unknown nonlinear functions or if more
NN nodes are used to improve the approximation precision,
a large number of adaptation parameters will be needed to be
updated online. In this paper, we estimated the norm of all the
weight vectors but not each weight vector; therefore, only one
adaptation learning law is required to control each subsystem.

IV. SIMULATION RESULTS

In this section, we will exploit a simulation example to
demonstrate the effectiveness of the proposed adaptive NN
control method.

Consider the following large-scale stochastic nonlinear
systems:

dx1,1 =(x1,2 + f1,1 + h1,1)dt+ g1,1dw1

dx1,2 = (u1 + f1,2 + h1,2)dt+ g1,2dw1

y1 =x1,1

dx2,1 =(x2,2 + f2,1 + h2,1)dt+ g2,1dw2

dx2,2 = (u2 + f2,2 + h2,2)dt+ g2,2dw2

y2 =x2,1

where the nonlinear functions are f1,1 = −100x1,1,
f1,2 = x1,2 sin(x1,1), f2,1 = 3x2,1 cos(0.2/x2,1), and
f2,2 = −x2,2 sin(x2,1); the interconnection functions are
h1,1 = cos(y1)y2, h1,2 = −y1 sin(y2), h2,1 = sin(y1)y2, and
h2,2 = cos(y1)y2); the stochastic disturbance functions
are g1,1 = sin(y1), g1,2 = cos(y1), g2,1 = sin(y2),
and g2,2 = cos(y2); and the initial states are chosen
as x1,1(0) = 0.2, x1,2(0) = 0.3, x2,1(0) = 0.5, and
x2,2(0) = 0.4. The observer is designed as

˙̂x1,1 = x̂1,2 + l1,1(x1,1 − x̂1,1)

˙̂x1,2 =u1 + l1,2(x1,1 − x̂1,1)

˙̂x2,1 = x̂2,2 + l2,1(x2,1 − x̂2,1)

˙̂x2,2 =u2 + l2,2(x2,1 − x̂2,1).

Fig. 1. Trajectory of system output y1.

According to Theorem 1, the virtual control function α1,1, α2,1

and the true control law u1, u2 are chosen respectively as

α1,1 = − 1

2a21,1
z31,1θ̂1, u1 = − 1

2a21,2
z31,2θ̂1

α2,1 = − 1

2a22,1
z32,1θ̂2, u2 = − 1

2a22,2
z32,2θ̂2 (31)

where z1,1 = y1, z1,2 = x̂1,2 − α1,2,f , z2,1 = y2, and z2,2 =
x̂2,2 − α2,2,f . The adaptive laws are given as

˙̂
θ1 =

2∑
j=1

r1
2a21,j

z61,j − k1,0θ̂1

˙̂
θ2 =

2∑
j=1

r2
2a22,j

z62,j − k2,0θ̂2. (32)

In the simulation, the design parameters are chosen
as l1,1 = l1,2 = l2,1 = l2,2 = 50, a1,1 = a1,2 = 0.13,
a2,1 = a2,2 = 0.115, r1,1 = r1,2 = 20.5, r2,1 = r2,2 = 30.5,
k1,0 = k2,0 = 0.01, κ1,2 = 0.06, and κ2,2 = 0.001. The
simulation results are illustrated in Figs. 1–8, respectively.
Figs. 1 and 2 show the system output y1 and y2. Fig. 3 and
4 illustrate the new state variables α1,2,f and α2,2,f of the
first-order filters. Figs. 5 and 6 depict the trajectories of input
u1 and u2, whereas Figs. 7 and 8 illustrate the trajectories of
adaptive parameter θ̂1 and θ̂2.

Remark 5: From Figs. 1–8, we can see that the system output
y1 and y2 can converge to a small neighborhood around the
origin. In addition, the filter signals α1,2,f and α2,2,f , control
input u1 and u2, and the adaptive parameter θ̂1 and θ̂2 are
all bounded. The presented simulation results illustrate the
effectiveness of the adaptive dynamic surface control approach
proposed in this paper.
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Fig. 2. Trajectory of system output y2.

Fig. 3. Trajectory of a state variable of a first-order filter α1,2,f .

Fig. 4. Trajectory of a state variable of a first-order filter α2,2,f .

Fig. 5. Trajectory of control input u1.

Fig. 6. Trajectory of control input u2.

Fig. 7. Adaptive parameter θ̂1.
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Fig. 8. Adaptive parameter θ̂2.

V. CONCLUSION

In this paper, a decentralized adaptive NN output-feedback
control design method has been proposed for a class of large-
scale stochastic nonlinear systems. Direct adaptive NN control
method has been used to approximate the unknown nonlinear
functions, in which the number of on-line adaptive parameters
is only one; therefore, the computation burden can be signifi-
cantly reduced. In addition, a state observer has been designed
to estimate the unmeasured states. In order to overcome the
problem of explosion of complexity, a dynamic surface control
method has been applied in the large-scale stochastic nonlinear
systems. It is shown that all the signals in the closed-loop sys-
tem are semiglobally uniformly ultimately bounded. Finally, a
numerical example has been given to illustrate the effectiveness
of the proposed design technique.
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