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Abstract: This paper deals with the continuous-time model identification (CMI) of fractional
order systems with time delays. In this paper, a new linear filter is introduced for simultaneous
estimation of all model parameters for commensurate fractional order systems with time delays
(CFOTDS) based on step response data. The proposed method simultaneously estimates the
time delay along with other model parameters in an iterative manner by solving simple linear
regression equations. For the case when the fractional order is unknown, we also propose a
nested loop optimization method where the time delay along with other model parameters are
estimated iteratively in the inner loop and the fractional order is estimated in the non-linear
outer loop. The applicability of the developed procedure is demonstrated on two fractal systems
by doing Monte Carlo simulation analysis in the presence of white noise.
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1. INTRODUCTION

Fractional calculus is a generalization of the traditional in-
teger order integral and differential calculus to non-integer
orders. With the growing power of computers, fractional
calculus now has become an increasingly interesting topic
of research in the scientific and industrial communities.
Before the 19th century, the theory of fractional calculus
developed mainly as a pure theoretical field of mathemat-
ics useful only for mathematicians. A significant amount
of discussions aimed at this subject has been presented
by Oldham and Spanier (1974) and Podlubny (1999).
However, recently it has been observed that many real-
world physical systems are well characterized by fractional-
order differential equations rather than using classical in-
teger order models. In particular, materials having long
memory and hereditary effects (Bagley and Torvik (1984))
and dynamical processes such as mass diffusion and heat
conduction (Jenson and Jeffreys (1974)) in fractal porous
media can be more adequately modeled by fractional-
order models rather than integer-order models. Some of
the other examples of fractal systems include transmission
lines, electrochemical processes, dielectric polarization and
viscoelastic materials. The special issue of signal process-
ing (Ortigueira and Tenreiro (2006)) discusses many of the
applications of fractional calculus in detail.

System identification has become the standard tool for
modeling unknown systems. However, identifying a given
system from data becomes more difficult when the physical
systems are characterized by fractional-order differential
equations instead of classical integer order models. Thus,
fractional models, using fractional differentiation, have
been developed. Time-domain system identification using
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fractional differentiation models was initiated by Lay (Lay
(1998)) and Cois (Cois (2002)), in their PhD thesis work
in the late 1990s. The two model identification approaches
developed were: Equation-error-based and output-error-
based approaches, both of which are very well studied in
the literature. As in the case of continuous model identi-
fication for integer order models, fractional differentiation
of the noisy signals also amplifies noise. Hence, a linear
transformation using low-pass filter can be applied to the
model equation. As for the integer case, there are many
filters proposed for FO models such as fractional integral
filter, Poisson’s state variable (SVFs) filters (Cois et al.
(2001)), and Refined Instrumental Variable for Continuous
systems (RIVC) (Malti et al. (2008a)). Also, identification
methods based on orthogonal basis functions (fractional
Laguerre and Kautz basis functions) have been proposed
(Aoun et al. (2007)). The recent paper by Malti et al.
(2008b) discusses briefly all these advances in time-domain
system identification using fractional models.

However none of these studies discuss methods for identi-
fication of fractional-order systems with time delays. For
example, due to the actuator limitations in some systems
such as motion control, it is reported in Manabe (2003)
that the system can be well modeled with a fractional-
order open-loop transfer function with time delay. In this
paper, we describe a scheme for continuous time identifi-
cation of commensurate fractional order models with time
delays based on step response. In this scheme the delay
is estimated simultaneously with other model parameters.
The formulation as proposed by Ahmed et al. (2007) for
integer order continuous-time systems is extended to the
identification of fractional models. To the best knowledge
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of the authors no formulation for estimating all model
parameters including delays has been proposed for fractal
models. The formulation is based on the low pass filtering
operation where the filter is chosen as the combination of
RIVC and a linear integral filter, to decouple the delay
term from other parameters. The proposed method esti-
mates the time delay along with constant model parame-
ters in an iterative manner by solving simple linear regres-
sion equations. We also propose a nested loop optimization
method where the time delay along with constant model
parameters are estimated iteratively in the inner loop and
the fractional order is estimated in the non-linear outer
loop.

This paper is organized as follows. Section 2 presents a
brief mathematical background of fractional calculus with
an introduction to fractional order models. The continuous
time model identification algorithm for CFOTDS for step
input signals is presented in Section 3. To study the
efficacy of the proposed strategy developed in the Section
3, two example of fractal models in the presence of noise
are outlined in section 4 to demonstrate its applicability
followed by concluding remarks in Section 5.

2. MATHEMATICAL BACKGROUND
2.1 Definitions and FO models

Fractional calculus is a generalization of integration and
differentiation to non-integer orders. The two most popu-
lar definitions used for the general fractional differintegral
are the Griinwald-Letnikov (GL) discrete form of the defi-
nition and the Riemann-Liouville (RL) definition (Oldham
and Spanier (1974)). The GL definition for a function f(t)
is given as

DY) = tim Y (0 ()i @)

where
A —
i =

and the operator D* defines fractional differentiation or
integration depending on the sign of A, I'(.) being the
well known Euler’s Gamma function and h is the finite
sampling interval. This definition is particularly useful for
digital implementation of fractional order controllers. The
RL definition is given as

N :z% {le— ») / (t- ﬁﬁl_m

where m is an integer such that (m —1 < A < m) and
t>0VAeR,

For convenience, the Laplace domain notation is usually
used to describe fractional differ-integral operation. When
the initializations are assumed to be zero,

T\ +1)
TG+ )T =i+ 1) 2)

D’ f(t) dr| (3

L{D*f(t)} = s*F(s) (AeR) (4)
The generic single-input single-output (SISO) fractional
order system representation in the Laplace domain is given
as
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Y(s) bosPo + byt + ... + b,y s5m

G =
() U(s) 1+ a1s™ + ... + ap s

where by, b, ...... ,bm and aq,asg, ...... ,a, are constant
model parameters or model coefficients, while Gy < (1 <
..... < Bmand a; < az < ... < a, are the fractional
powers or fractional orders (real numbers).

The transfer function given by equation (5) can be classi-
fied as either a commensurate transfer function or a non-
commensurate transfer function. A transfer function G(s)
is commensurable of order « if and only if it can be written
as G(s) = F(s7), where F' = T/R is a rational function,
with 7" and R as two coprime polynomials. Assuming that
G(s) is commensurable of order +, then it can be written

as m j
g3
Ej:o bjs

G(s) = —=9=0%
RS S

(6)
where we substitute 8; = jy and o; = ivy. The transfer
function (5) is called non-commensurate when ;,a; can
take any arbitrary values. On the other hand, commen-
surate transfer function models represent more generic
class of polynomial type transfer functions where v = 1
gives standard integer order transfer function models. A
commensurate transfer function of order v for fractional-
order time delay system is given as

T
G(S) = % e—Ls (7)
14> ais™
where L is the time delay. In this work we will be working
only with commensurate transfer function models with
delays as given by (7).

2.2 Stability condition

Stability condition for a class of transfer function of the
form (6) has been established by Matignon (1998). The
theorem is as follows:

Stability Theorem A commensurable y—order trans fer
function G(s) = F(s7) = T(s7)/R(s7), where T(.) and
R(.) are two coprime polynomials, is BIBO stable if
and only if

0<y<2
and for o € C such that R(c) =0

™
jarg(o)] > 75

2.8 Integer order approximation

For digital implementation of the fractional order opera-
tor, the key step is numerical evaluation or discretization
of this operator. Power series expansion and continued
fraction expansion (CFE) of the Euler’s, Tustin and Al-
Alaoui operators give different discrete approximations
of the fractional operator. The power series expansion
of Euler’s operator gives numerical approximation of GL
definition (1). The GL definition is the most widely used
and implemented discrete approximation for this operator.
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The details for the discretization schemes can be found in
Vinagre et al. (2002) and Chen and Moore (2002). How-
ever, sometimes frequency domain fitting in the continuous
time domain of this fractional order operator is done first
and then discretization of this transfer function is done to
get the discrete approximation. One of the good continu-
ous approximation for this fractional order operator is the
Oustaloup continuous approximation (Oustaloup (1995))
where it makes use of a recursive distribution of poles and
zeroes. We will be using the numerical approximation of
(1) for simulation of fractional order systems.

3. IDENTIFICATION OF FRACTAL SYSTEMS WITH
DELAYS

3.1 Identification formulation

The transfer function for CFOTDS of commensurate order
« is given as

m ,

o bjsI?

G(s) = %ja et (8)
L+ a;8

In rational transfer functions (integer order models) «

= 1 and only the coefficients a;,b; and L are estimated.
However, here we are interested in estimating a as well.

For the present case, initial conditions are assumed zero.
The above model in the vector form can be written as

a,8"Y (s) = b;,s™U(s)e " + e(s) 9)

where
an = [an Ap—1 ---- A1 1] c Rlx("-‘rl) (10)
by, = [bm bm_1 .... b1 bo] e RIx(m+1) (11)

Sna:[sna S(nfl)a o sY SO]T c R(n+1)><1 (12)

and Y (s),U(s) and e(s) are the Laplace transforms of
output y(t), input u(t) and e(t) respectively. Here e(t)
accounts for the noise.

Next, we will devise a linear filter method for the estima-
tion of the parameters. To obtain explicit appearance of
the delay term in the estimation equation and get it as
an element in the parameter vector, we introduce a linear
filter method with structure of the filter as a combination
of RIVC and a linear integral filter. This low pass filter not
only serves the purpose of removing noise amplification but
it also decouples the delay term from the other parameters.
The filter transfer function is represented as
1
«
Fs?) sA(s¥)

where A(s®) is the denominator of the above model.

(13)

Now applying filtering operation on both sides of equation
(9) yields

a,8"*F(s*)Y (s) = by, s™ F(s*)U(s)e " + F(s)e(s)

or

1 1
n no Y — bm mao
a,s SA() (s) 8™

where ¢(s) = F(s)e(s).
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Here F(s) can be factored as

1 C(s%) 1
SA(s%) - SA(s%) + s (16)
where
C(s%) = —(ans™™ + Anp s D ay8%) (17)
Also, a, and by, can be factored as
a,s" = (&,s" V%Y +1) (18)
and
b = (bys™ Vs + by) (19)

where a,, and b,, are the a, and b,, vectors respectively
with the last element removed. Now defining the filtered
output variables as

s*Y (s)

() and Yyp(s) = D]

Yils) = SA(s%)

(20)
and similarly for U(s).
Thus (15) becomes

Yi(s) = —a,5" VY p(s) + bs™ VU p(s)e Lo

+ bo (Si((s;)) + i) U(s)e ™ +¢(s) (21)

and for step input of step size h,

h

U(s) = S (22)

then
Yi(5) = ~8s" DY p(s) + s DU, p (s)e L

Cs*)\h _, 1h _;
b _ S b _ S
o (SA(SO‘)> s° * 0% s® (o)

(23)

Yf(s) = —ﬁns(nil)anD(S) + B,,Ls(mil)anD(S)eiLs

h

1h
+ bOC(s“)F(SO‘)ge_LS + bogge_Ls +(s) (24)

Before taking the Laplace inverse of (24) on both sides, we
define the inverse Laplace transforms for various terms as

£71(Y1(s)) = Y5 (1) (25)

£71(Yyp(s) =Yin(t) (26)

£71(Uysp(s)) =Usp(t) (27)

L7 (F(s%) = F(1) (28)

£7(s(s)) =<(1) (29)

£ (s<”*1>anD(s) =y o) (30)
£7(F(s*)C(s%)) = Fo () (31)
£_1(F(SQ)C(SO“)§6_LS) —hFL(t-L)  (32)

£ (st ey p(s)e ) UML) (33)
Lo <U(s):Ls> =L CfieL) (34)

=h({t—L) for t>L (35)
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Now taking inverse Laplace transform of (24) we have

Yi(t) = —8,Y} 5 V() + b UV (t — L)

+bohF&(t — L) + boh(t — L) + s(t) (36)
If we define Gy as
U(’ITL*l)OL(t _ L) 1T
Gy = ffID (37)
hFEL(E— L) + ht |
then
(n—1) 1] 2
Yi(t) = [—Yfg *(t) Gy —h [bm +¢(t) (38)
- b(]L
or equivalently
Y(t) = ()0 +<(¢) (39)
an
where 0 = lbm
boL

Similarly, we can write (39) for all ¢ = ¢}, where k =¢,t +
1, ... N, such that ¢ > L, N being the total number of
data points. The stacked terms in this equation then yield
the following estimation equation

U=0a0+A (40)
In practice, the selection of the output y(t) after ¢ > L can
be made as follows (Bi et al. (1999)). When the process
enters a zero initial state, the process output will be
monitored for a period, the listening period, during which
the noise band B,, can be found. Then, y(¢) satisfying

arg(y(t)) > 2B, (41)

can be treated as the process response after t > L, and
thus can be used in (40).

3.2 Parameter estimation

When « is known: Since the filter itself involves the
coefficients a,, and we need L in order to formulate the
above linear regression equation, we start with some initial
values of a, and L, then using the above formulation
(solving using linear least squares) we can get a new
estimate of the parameter vector 6. This parameter vector
also gives us updated estimates of a,(note that ag = 1)
and L. The updated values are again used to get the
new estimates. In this way we can iteratively estimate
all the model parameters. Note that we still have L term
coupled with the by term, so any error in estimating one
term translates to another. Now for the case when the
data is corrupted with white noise, the filtering operation
converts the white noise signal to colored noise and this
algorithm gives biased estimates in the presence of colored
noise. Thus in order to get the unbiased estimates of the
parameters, we use the bootstrap instrumental variable
(IV) algorithm (Young (1970)) where the instruments are
built based on the auxiliary model (using predicted y(9)
instead of measured y values). The instrument variable is

then defined as

> (n—1)a T
R ()

orv(t) = Gy
—h

(42)
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Update a

Fix filter order a T

Assume a,, b, and L

LS STEP : Estimate the
parameters solving linear
regression equation

Update L and a,

NO

IV STEP : Get updated
values of parameters, again
by solving the linear
regression equation

Convergence Optimal a

FO model with
delay

Fig. 1. Algorithm for estimating parameters for CFOTDS

Using this, we can construct the instrumental variable

matrix as @y (¢) and we add this IV scheme within the

iteration steps of our proposed method thus requiring no

additional steps, and the parameter estimation step is then

given by

(s s s -1 s s

0 = (er Oy ) @@ ) v ()T W)

(43)

where (i) gives the iteration count, and @Iv(éyv_l)),

@(égi‘;l)) and \IJ(GAEZ‘;D) constructs @y, ¢ and ¥ respec-

tively for the parameter vector éy‘;l).

When a is unknown: In cases when fractional order «
is also an unknown variable, we can get a estimate of « by
posing the problem as nested loop optimization problem.
We start with an initial value of « in the outer loop
and in the inner loop we iteratively estimate the model
parameters (a,,b,,) and the delay term (L), as discussed
in the previous section and then update « in the outer loop
in a non-linear fashion. The algorithm for the proposed
scheme is sketched in Fig. (1). The algorithm will not have
an outer loop when « is known.

8.8 Summary of the proposed algorithm

The iterative procedure for the parameter estimation can
be summarized as

STEP 1. OUTER LOORP :

Initialization 1 : Initialize the algorithm with some

initial value for o
STEP 2. INNER LOOP :

Initialization 2 : Initialize the inner loop with some

intial values for ﬁ%o) and L©

i.) LS Step:i=1
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Construct ¥ and ® by replacing a,, and L with

the estimates, as -;15?) and L and get new estimates of
parameters as

0N = (7.0)" (07 W)

Get values of 59),5&) and L(*) from 6™
11.) IV Step:i =1+ 1 to convergence

Construct ¥, ® qnd @y by replacing a,, by, and L
with estimates as ésf_l), biY and LE-D and get new
0 estimates as

0" = (&7, @)1 .(9F,.0)

Get the values of 555')7 }35,? and L® from 6® and
repeat this step till convergence.

STEP 3. Update value of o based on the minimization
of the objective function (i.e repeat steps 1 and 2 till
this objective function is minimized)

& = argmin(ATA)

For the cases when « is known, we will only have the
inner loop where the model parameters a,,,b,, and L are
estimated iteratively.

3.4 Convergence issues for the proposed method

The initialization of the inner loop involves choices of
ay,b,, and L. In practice any initial choice is good except
that the filter should not be unstable. As the filter is
updated in every step, the final estimate of the parameters
is not found to be much sensitive to the initial choice. How-
ever, for the outer loop some knowledge on the fractional
order is necessary. This is because for some initial values
of the fractional order the convergence of inner loop is
not always guaranteed. For the case when the fractional
order is known, extensive simulation study shows that the
parameter estimates obtained in the inner iterative loop
converge monotonically to the true parameter values.

4. IDENTIFICATION RESULTS

To illustrate the utility of the proposed algorithm, the
identification exercise is carried out on the simplest trans-
fer function of the form given below:
G(s) = 720 e Ls
a1s® +1

where « is the commensurate fractional order for this
model. We performed the identification exercise for both
the cases

(44)

e When « is known and
e When « is unknown

We performed simulations for the deterministic case and
also for the case when a zero mean white noise is added
as a disturbance to the system with a signal to noise ratio
(SNR) defined by

var(signal)

SNR = (45)

var(noise)

Here, the numerical approximation of (1) is used for
simulating the fractional order system.
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4.1 FEzercise-1 : When « is known

Example 1: We considered the following fractional order

system

— 1 e—4s
5595 + 1

Thus, the true parameters are by = 1, ay = 5, L = 4.
To illustrate the efficiency of the proposed algorithm the
system is simulated using the sampling time of 0.01sec
for the deterministic as well as noise case. The output
y(t) is corrupted by adding additive Gaussian white noise
signal with mean zero and a fixed SNR. Three different
values of SNR chosen are oo(deterministic case), 30 and
10. For each SNR, 100 Monte Carlo (MC) simulations with
different noise realizations are performed. For each case
we estimated the model parameters (ai,bg,L) using the

proposed algorithm. Table 1 gives the average (av()) and

the sample standard deviations (s(6)) of each parameter
for these MC simulations. As can be seen, the estimated
parameters are quite close to the true values, thus indicat-
ing that the proposed algorithm gives unbiased estimates
even in the presence of noise. One interesting thing to note
here is that the fractal system when 0 < a < 1 has very
slow dynamics and the step response approaches the new
steady state value very slowly and thus in actual practice,
one would require infinite amount of data to capture the
entire dynamics for this kind of processes. However, the
proposed algorithm does well in estimating the parameters
for these systems.

Gro,(s) (46)

Table 1. Estimated parameters for process
Gro, (s) for different SNR

SNR=o00 | SNR =30 SNR =10

0 av(8) | s(9) av(0) | s(0)
a1 | 5.006 5.004 | 4.00x10~3 | 5.000 | 8.02x10—%
bo | 1.000 1.000 | 1.82x10~% | 1.000 | 4.82x10~°
L | 3.975 3.963 | 3.73x10~2 | 3.964 | 3.58x102

Example 2: We considered the following fractional order
system

1 —2s
Gro,(s) = POEEE (47)
Thus, the true parameters are by = 1, a1 = 1, L =

2. The sampling time is fixed as 0.01 sec. Again, the
identification exercise is performed at SNR values of oo,
30 and 10 and for each SNR, 100 Monte Carlo (MC)
simulations are performed for different noise realizations.
For each case we estimated model parameters (as,bo,L)
using the proposed algorithm. Table 2 gives the average
and the sample standard deviations of each parameter,
for these MC simulations. Again, as can be seen the
estimated parameters are quite close to the true values,
thus indicating that the proposed algorithm gives unbiased
estimates in the presence of noise.

4.2 FEzercise-1I : When « is unknown

We considered the same fractional order system as given by
(46) for this exercise, however now we are also estimating
the commensurate order a:

1 _
Gros(s) i

T hs05 110 (48)



15th IFAC SYSID (SYSID 2009)
Saint-Malo, France, July 6-8, 2009

Table 2. Estimated parameters for process
Gro,(s) for different SNR

SNR=o00 | SNR=230 SNR =10

0 av(0) | s(0) av(0) s(0)
a1 | 0.999 0.999 | 7.86x10~° | 1.001 7.26x10~°
by | 0.999 0.999 | 7.26x10~° | 0.999 7.26x10~°
L | 1.987 1.982 | 1.81x10~2 | 1.9815 | 1.86x102

Thus, the true parameters are by = 1,a; =5, L =4 and «
= 0.50. The sampling time is fixed as 0.01 sec. The same
three values of SNR (00,30,10) are chosen and for each
SNR, 30 Monte Carlo (MC) simulations are performed
for different noise realizations. For each case we estimated
the fractional order («) as well as other model parameters
(a1,bo,L) simultaneously using the proposed nested loop
optimization algorithm. Table 3 gives the average and the
sample standard deviations of each parameter for these
MC simulations. As can be seen the estimated parameters
including the fractional order « are quite close to the true
values, thus indicating that the proposed algorithm gives
unbiased estimates of all the parameters in the presence of
noise. However, there are some computational issues with
the outer non-linear loop, for some arbitrary guess value
of «, the inner loop does not always converge. Therefore,
having some process knowledge regarding the fractional
order « is important. We started with a initial guess of «
= 0.4 for all the cases.

Table 3. Estimated parameters for process
Gro,(s) for different SNR

SNR=o00 | SNR=30 SNR =10

6 av(f) | s(0) av(0) | s(9)
a | 0.501 0.500 | 2.08x10~° | 0.501 | 4.86x10~%
a1 | 5.010 4.995 | 5.10x10~3 | 4.995 | 5.20x103
bo | 0.999 0.999 | 3.38x10~% | 0.999 | 1.10x10~3
L | 3.983 3.986 | 1.45x10~2 | 3.985 | 1.53x102

5. CONCLUSION

In this paper, continuous-time identification of commensu-
rate fractional order models with time delays is proposed.
The proposed method works with step response data. It
is based on a linear filtration method where the filter is
chosen as a combination of RIVC and a linear integral
filter. Using this filter, we can decouple the delay term
from other constant model parameters and thus form a
linear regression model to estimate these parameters in
an iterative manner. For the case when the fractional
order « is unknown, a nested loop optimization method is
proposed to estimate the time delay along with constant
model parameters in an iterative way in the inner loop
and the fractional order in the non-linear outer loop. The
applicability of the developed procedure is demonstrated
on different CFOTDS for the cases when « is known
and when « is unknown. In the presence of noise, Monte
Carlo simulation analysis for different noise realizations is
done to demonstrate that the proposed algorithm gives
unbiased estimates even in the presence of noise. In the
future, the interesting perspective would be to extend the
proposed algorithm for the case where all the parameters
are estimated using other types of input excitation signals.
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