
Design of Sliding Mode - Neural Network 

Controller with Fuzzy Observer for Hyper 

Chaotic Systems Considering Uncertainty, 

Disturbance, and Nonlinear Control Inputs 

Abstract 

The main idea of chaos is defining behavior of certain systems that are highly 

sensitive to their initial condition. In chaotic systems, using a nonlinear controller 

is recommended to achieve good performance. Sliding mode controller is a robust 

state feedback controller to deal with uncertainties and has fast transient response. 

However, it is not an appropriate controller in the steady state of the system 

because of the existence of chattering. On the other hand, the neural controller is 

successfully applied on the control of chaotic systems but transient performance of 

this controller is not appropriate in the face of uncertainties due to its inevitable 

learning process. 

In this paper, a hybrid sliding mode-neural network controller with variable 

weights is designed to utilize the advantages of both controllers. A fuzzy observer 

has the task of optimal tuning of these coefficients. The fuzzy observer also 

supervises the switching process between the two controllers. 

 

Introduction 

While the properties of chaotic systems are almost clear and by observing the 

behavior of a chaotic system, one can say that if it is chaotic or not, there is no 

precise definition of chaos. This is partly conceivable since before being a purely 

mathematical concept, the chaos is a concept that has its origins in the field of 

human perception and natural language. Proposing a theory that covers all human 

understanding of such half-objective half-subjective phenomenon is not a simple 

task. However, several different mathematical definitions for chaos are available 

that are more or less acceptable. 



One of the characteristics of chaotic systems is high sensitivity to initial conditions 

[1]. A chaotic system, unlike a system with stable equilibrium point or a limit 

cycle, is sensitive to small changes in its states. Very small changes in initial 

conditions lead to significant changes in the final conditions. Known examples are 

weather condition phenomenon and Butterfly phenomenon. Nonlinear dynamics of 

the atmosphere and not having all initial conditions at the start of calculation (for 

example, lack of access to and uncertainties in the measurement of temperature, 

humidity etc. in all parts of the earth) make long-term predication impossible. 

In the past, due to complex dynamics and inherent instability of chaotic systems, 

their control was considered impossible. However, it has been shown that chaotic 

systems can also be controlled [2] and different control objectives are conceivable 

for them. Nonlinear control strategies are also applicable for these systems. 

Moreover, Because of their special features, new control methods can also be 

applied on these systems [3-5]. One of the first applications of chaos control has 

been reported as the stabilization of laser output intensity chaos [6]. In this paper, 

using OPF (Optimal Power Flow), the output power has increased 15 times. For 

more information on chaos control applications refer to [7]. Other applications are 

controlling pendulum, gyroscope, bouncy balls, ship fluctuations, turbulence in 

fluids, multi-mode behavior of laser, deletion, or creation of a chaotic state in a 

chemical reaction called Belousov-Zhabotinsky, and controlling chaotic mixing to 

increase the speed of mixing process, insect population with little change in the 

number of adult insects and removal of epilepsy cases in animals. 

The main objective of control engineering is to introduce stable systems. Most 

designs are done in a way that the signals reach a predetermined value or track 

other signals. Instability is not accepted in control engineering and for this reason 

most of the control theory is about ideas on stabilization. Taking this in mind, 

chaos is undesirable. Several methods for stabilizing a chaotic system, stable 

equilibrium or stable limit cycle, have been proposed. However, some applications 

have been introduced recently that suggest that creation of a chaotic signal is not 

only not harmful, but also desirable. For example, mixing liquids that make them 

act faster than the periodic motion [8] and generating chaotic signal for safe 

telecommunications can be mentioned [9]. 



Methods that have been proposed for the control of chaotic systems to date are 

classical techniques such as linear control, sliding mode control and intelligent 

techniques such as fuzzy logic and neural networks. As we know, the linear control 

is ineffective subject to uncertainties [10]. Sliding mode control is a robust 

nonlinear control method that is very effective to deal with uncertainties. On the 

other hand, this method has a very fast transient response. However, it has 

discontinuous control signal and chattering, which may lead to excitation of high 

frequency dynamics.  

In recent decades, the use of artificial intelligence to control chaotic systems is 

considered [11, 12]. Common methods of artificial intelligence include neural 

networks control and fuzzy control. Neural networks have inherent ability to learn 

and approximate a nonlinear function with arbitrary precision. This property is 

being used in control to model complex processes and compensating uncertainties. 

However, it is inevitable learning process reduces its transient performance in the 

face of disturbances. Superiority of fuzzy control is in utilizing human knowledge 

in control process. However, the main issue of this method is lack of enough 

theories to check stability of fuzzy controllers in general. To overcome the 

disadvantages and utilizing the advantages of intelligent and conventional 

controllers, a method is proposed in [13] that combines sliding mode control with 

neural network control with different weights. These weights are determined using 

a fuzzy observer and are applied successfully on a robotic arm. 

In this paper, the objective is to combine sliding mode control with neural network 

with different weights to control the chaotic system presented in [14] and these 

weights are tuned using a fuzzy observer. In this method, neural network controller 

is used in parallel with the sliding mode controller. Sliding mode control is 

designed to reject disturbances and guarantee the stability of the system. Neural 

network controller reduces chattering. It also estimates dynamics of the system and 

using its learning ability overcomes unstructured uncertainties. High gain is 

assigned in the transition state to the sliding mode control to guarantee system 

robustness. When approaching a steady state response, the neural network switches 

to the main controller to overcome the uncertainties and increase tracking 

accuracy. Fuzzy observer can facilitate this switching between controllers. 



This paper is organized as follows. In the second part, dynamics of the chaotic 

system are introduced. The proposed control scheme is presented in the third part. 

Computer simulation, discussion, and conclusion of it are discussed in the fourth 

part and finally, the fifth part concludes the paper. 

 

Dynamic equations of hyper chaotic system under study 

As mentioned in the introduction, the hyper chaotic system introduced in [14] have 

been studied. The dynamic equations of the system are expressed in (1). 
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Where ( )i ix   = 1,2, 3,4 represent the system state variables. System parameters are as 

follows (Table 1): 

 

Table 1 – parameters of dynamic equations of the system 

k  h  g  f  n  d  c  b  a 

2-  1  1  4-  8  4  8  1-  7/7  

 

The system exhibits the behavior of a chaotic system with two positive Lyapunov 

exponent L1=2.316 and L2=0.59. To study different dynamic behaviors of this 

system one can refer to [14]. 

Figure 1 displays a number of absorbent hyper chaotic images of system (1) in 

two-dimensional and three-dimensional space. 

  



  
Figure 1: absorbent chaotic images in two-dimensional and three-dimensional space  

 

Suppose that system (1) is under non-structural uncertainties, external disturbances 

and nonlinear control inputs. Having these in mind, matrix equations of the system 

can be written as (2). 

)2(  φx(t) = Ax(t) + Bf + B (u(t)) + BΔf + Dw(t)ɺ  

Where [ ]1 4
...x x ∈

T 4×1x = R  denotes state variables, 4×4A = R is a matrix of linear terms 

of system dynamics, [ ]1 2 3
f f f ∈

T 3×1f = R is a matrix of nonlinear terms of system 

dynamics, ∈ 4×3B R  displays a constant matrix, ( ) ( ) ( ) ( )1 1 2 2 3 3u u uφ φ φ φ ∈  
T 3×1u = R  

represents vector of nonlinear control inputs, [ ]1 2 3f f f∆ ∆ ∆ ∈ 3×1
Δf = R  is a vector 

of non-structured uncertainties, ( )t ∈w R shows external disturbances and  ∈ 4×1D R  

is a constant vector. A, B, F, and D are given in (3). 
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( ) ( ) ( )( ) ( )φx t = Ax t +f + B u t +Δf + Dw tɺ can be used to describe equations of system 

(1) in matrix form and f∆ and f should be modified as [ ]1 2 3 4
f f f f∆ ∆ ∆ ∆

T
Δf =

and 2 2 2

2 3 1 3 2 1 4- 4 0x x x x x x x + 
T

f = . For external disturbance ( )t ∈w R , the 

condition ( )
2

t < ∞w is considered and (4) defines ( )
2

tw  that ( )tw represents 

Euclidean norm of ( )t ∈w R . 

Equation (4) shows the assumed constraint for non-structural uncertainties. 

According to (4), non-structural uncertainties are bounded and real constants

3 2 1, ,η η η  are upper bounds of these uncertainties. 

)4(  ( )1 2 3 4
, , , , 1, 2,3

i i
f x x x x iη∆ ≤ =  

Supposed conditions for nonlinear functions of control inputs are given in (5). 

These circumstances suggest that ( )1 1uφ , ( )2 2uφ  and ( )3 3uφ  are within the sectors

[ ]1 2,α α , [ ]1 2,β β  and [ ]1 2,ζ ζ respectively [15-16]. 
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Figure 2 depicts a hypothetical schematic of conditions in (5) for ( )1 1uφ . In this 

paper, two objectives are considered to control the system (2). The first objective is 

to design a robust controller such that the hyper chaotic system converges to its 

equilibrium point ( ) ( )1 2 3 4, , , 0,0,0,0e e e ex x x x= =e despite the presence of non-

structural uncertainties, external disturbances and nonlinear control inputs, and the 

second goal is to weaken the disturbance. 

  



  
Figure 2: hypothetical schematic of conditions in (5) 

The proposed control method 

Here, the feedback controller ( )  h ,  k  υ = x is determined so that the control system 

converges to its unstable equilibrium point or its periodic orbits. If we assume       

υ = 0, the controlled system becomes the primary chaotic system. 

As mentioned earlier, in the proposed control method, the combination of sliding-

mode controller and neural controller with different weights is used to utilize the 

advantages of both controllers and avoid their disadvantages. A fuzzy observer has 

the task of optimal determining of coefficients depending on the current situations. 

The use of fuzzy observer also prevents from sudden switching between the two 

controllers and facilitates the transition between the two. 

The basic structure of a fuzzy controller is composed of four parts of fuzzifier, 

fuzzy inference system, fuzzy rules base, and defuzzifier. 

In particular, a fuzzy controller with if-then rules base, minimum inference engine, 

singleton fuzzifier (single) and defuzzifier of mean center of gravity is expressed 

as (6). 
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In the current study, this type of fuzzy controller is used as fuzzy observer. 

In earlier works, fuzzy supervisory control that ensures system stability is 

presented. The main idea behind this is that if the system works well under the 

supervision, the observer will be idle. On the other hand, if the system under 

supervision tends toward instability, the observer will take action to avoid the 

instability of the system. This leads to discontinuity in the control function. To 

achieve continuous control, fuzzy gain-scheduling supervisory control is presented 

such as fuzzy supervisory PID control, fuzzy supervisory sliding mode and PI 

control [17]. It is obvious that if the controller is under supervision of a linear 

controller, it will not be effective enough to deal with uncertainties [18]. Hence, in 

this study a nonlinear intelligent controller, which is effective in dealing with 

uncertainties, is used. 

One of the advantages of sliding mode control is its fast and robust behavior in 

dealing with disturbance. Its disadvantages include chattering, the need to estimate 

the limits and conservative applying of bigger factors. On the other hand, neural 

network controller is able to overcome the structural uncertainties. However, the 

main disadvantage of this controller is its undesired transient response due to the 

process of updating parameters. To counter the disadvantages of the two 

mentioned methods, a new method is proposed that has been named as supervisory 

fuzzy sliding mode control and neural networks. 

Sliding mode control signal ensures system stability and directs the error to the 

sliding surface. When the error is closer to the sliding surface, chattering can be 

reduced with a smaller gain. In this case, the system is still subject to unstructured 

uncertainties and this causes the system to have inappropriate behavior in steady 

state. Therefore, the neural network capable of self-learning plays a major role in 

coping with unstructured uncertainties. On the other hand, delay in calculating 

control signal causes a discontinuity in the sliding mode control signal. Fuzzy 

controller acts as a supervisor and specifies gain coefficients of each low-level 

controller based on system behavior and the rules database. Fuzzy controller can 

also facilitate the switching of sliding mode controller to neural network controller. 



In this study, the fuzzy controller is a supervisory behaviorist controller. As shown 

in Figure 3, supervisory fuzzy controller is used to obtain the coefficients m and m-

1 for sliding mode controller and neural network controller respectively. Sum of 

gain coefficients of sliding mode controller and neural network controller equals 

one, so output limit of fuzzy observer (m) is considered to be between 0 and 1. The 

block diagram of the control system is shown in Figure 3. 

 

  
Figure 3: block diagram of the proposed control method 

 

Where n,q ,qɶ and s are system’s order, system’s output, reference signal-output 

error and sliding surface. 

Considering the above figure, the control signal can be stated as follows: 

)7(  
pd ad lsu(t) = u + m(t)u (t) + (1- m(t)).u (t)  

Since the system is stable with the mentioned conditions, there is no need to use a 

linear controller. Therefore, the control law can be written as follows: 

  

)8(  
ad lsu(t) = m(t) u (t) + (1- m(t)).u (t)  

 

m(t) can be determined using a fuzzy observer considering the error (mean square 

sliding surfaces) and the amount of error changes. 



Simulation 

In order to design the neural network controller, inverse identification method is 

used. This means that first, the inverse system model is identified by neural 

network and then the inverse model is used as the controller [19]. For 

identification, system outputs, x, and delayed inputs and outputs are used as neural 

network input and the system input u is used as the output of the neural network. 

To have precise identification, a separate network is used for each of the control 

inputs. Considered Structure for inverse identification of each of the control inputs 

is depicted in Figure 4.  

 

Figure 4: considered structure for identification 

 

The input of the neural network is system’s states with their 1-unit and 2-unit 

delays and 1-unit delay of control inputs. Since each MLP network with one 

hidden layer and a sufficient number of neurons is able to estimate any nonlinear 

function, here a neural network with 1 hidden layer and 100 neurons is used. 

Through a series of Pre- and post-processing operations, a neural network with 

better performance can be created.  

As mentioned earlier, an identified neural network in series or system can be used 

to control it. The control structure is shown in Figure 5. 



  
Figure 5: control structure using neural networks  

To design sliding-mode controller, equations presented in [20] are used. 

In order to design fuzzy observer, error signal and its derivatives is used to 

calculate the output. Three membership functions i.e. zero, small and large are 

considered for error and three membership functions i.e. negative, zero and 

positive are used for error changes. For m, the fuzzy membership functions are 

considered as fuzzy singletons that are named as zero, small and large. It should be 

noted that input ranges for error, error changes and output are [0, 15], [-1500 1500] 

and [0, 1], respectively. Fuzzy rules are as follows: (er and de indicate error and 

error changes, respectively.) 

1- If  er is zero and de is negative then m is large 

2- If  er is zero and de is zero then m is large 

3- If  er is zero and de is positive then m is small 

4- If  er is small and de is negative then m is large 

5- If  er is small and de is zero then m is small 

6- If  er is small and de is positive then m is zero 

7- If  er is positive and de is negative then m is zero 



8- If  er is positive and de is zero then m is zero 

9- If  er is positive and de is positive then m is zero 

After applying control law, the following results are obtained for system states and 

control input: 

  

  

Figure 6: system states  
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Figure 7: control signal 

  

As can be seen, system states have been improved and control signal chattering has 

been eliminated in steady state. For better comparison of system states, system 

outputs when the sliding mode controller is used alone and when a neural network 

controller is used in parallel with it are saved and are depicted in the following 

figure simultaneously. 
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Figure 8: comparison of system states using both controllers  

In the above figures, the black figures are related to sliding mode controller and 

blue figures are related to sliding mode-neural network control with fuzzy 

observer. As can be seen, the behavior of the system with sliding mode-neural 

network controller with fuzzy observer has improved in steady state and 

fluctuations are reduced dramatically. For a better view of the above figure, the 

following figure is presented. 
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Figure 9: comparison of system states using the two controllers  

The sum of squared errors for both methods is shown in the below figure. 

  

Figure 10: comparison of sum of squared errors 
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As can be seen, the sum of squared errors is smaller when using sliding mode-

neural network controller with fuzzy observer. 

The output of the system when a pulse disturbance is applied at 3.5 to 4 seconds is 

as follows: 

  

  

Figure 11: system states in the presence of a pulse noise applied at 3.5 to 4 seconds 
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Figure 12: control signal in the presence of a pulse noise applied at 3.5 to 4 seconds  

As can be seen, the system is able to cope well with the applied disturbance and the 

control signal does not have much variations. 

Conclusion 

As we know, chaotic systems are very complex and demonstrate an intricate 

behavior subject to uncertainties and various disturbances. Hence, in order to 

overcome these uncertainties and reject disturbances, a sliding mode controller was 

first designed that showed a good response in transient working conditions. Then, a 

neural network controller was designed that demonstrated a good steady state 

behavior. Finally, these controllers were utilized in parallel and a fuzzy observer 

was used to tune their coefficients. Finally, parameters of fuzzy observer were 

tuned in such a way that yielded a response without chattering and with good 

transient response.  

The results clearly showed that the system had desired response and steady state 

error with designed controller and could efficiently reject chaos. Compared with 

the sliding mode controller, states and input signal chattering was completely 
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disappeared and disturbance is rejected well. In short, the designed controller took 

the advantages of both sliding mode and neural network controller to compensate 

for disadvantages and improved system behavior better than the two controllers. 
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