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Abstract: We consider the application of a recently developed “conditional integrator”
technique for the output regulation of a class of nonlinear systems to process control systems.
For a special choice of the controller parameters, our controller reduces to a finely tuned
saturated PI/PID type controller with an anti-windup structure. This is of particular significance
because while the application of nonlinear control strategies such as feedback linearization,
adaptive/neural control and nonlinear model predictive control has reached considerable
maturity for process systems, industrial practice has traditionally relied on PI/PID controllers.
With our design, we provide both global regulation results (under state-feedback and when the
control is not required to be constrained), and regional/semi-global results with saturated control
and under output feedback. When applied to different process control problems, our simulation
results show that good tracking performance is achieved, in spite of partial knowledge of the
plant parameters.

Keywords: Process Control; Output Regulation; Integral Control; Sliding-mode Control;
Output feedback.

1. INTRODUCTION

In the past decade and a half, the analysis and application
of nonlinear control strategies for process systems has
reached considerable maturity. Control of chemical reac-
tors under varying assumptions on the class of systems,
available measurements, and control objectives has been
widely studied, and a variety of techniques, including feed-
back linearization, sliding mode control, adaptive/neural
control and nonlinear model predictive control; see, for
example, Alvarez-Ramirez and Morales [2000], Alvarez-
Ramirez et al. [1998], Antonelli and A.Astolfi [2003], Daou-
tidis and Kravaris [1992], Daoutidis et al. [1990], Fradkov
et al. [1997], Jadot [1996], Jadot et al. [1999], Kosanovich
et al. [1995], Kurtz et al. [2000], Maner et al. [1996], Valluri
et al. [1998], Veil and Bastin [1997], Veil et al. [1997] and
the references therein. An early survey/review of nonlinear
control of chemical processes can be found in Bequette
[1991], and a more recent/comprehensive overview in the
research monograph Henson and Seborg [1997].

Some of the issues that have been treated in detail in
the above cited literature include (i) uncertainties in the
process kinetics, (ii) presence of input constraints, i.e.,
control saturation, and (iii) the available measurements
(for example, it is well-known that in industrial practice,
it is easy to measure temperatures, but usually not con-
centrations Antonelli and A.Astolfi [2003], Kurtz et al.
[2000]). In spite of the wide variety of methodologies,
in virtually all present day industrial applications the
problem is efficiently solved using PI controllers. The sta-
bilization of chemical reactors by output feedback with
PI-type controllers has been reviewed and treated in de-
tail in the Ph.D. thesis of Jadot Jadot [1996]. A robust
control scheme in the face of uncertain kinematics for a

class of CSTRs has been proposed by Alvarez-Ramirez
et al. Alvarez-Ramirez et al. [1998], where it has been
shown that the proposed controller has the structure of PI
control. A more recent result, which goes beyond just the
analysis of closed-loop stability, and focuses on transient
performance, has been discussed in Alvarez-Ramirez et al
Alvarez-Ramirez and Morales [2000].

In a recent work Seshagiri and Khalil [2005], we developed
a new “conditional integrator” approach to the design
of robust output regulation for multi-input multi-output
(MIMO) minimum phase nonlinear systems transformable
into the normal form, uniformly in a set of constant
disturbances and uncertain parameters. Analytical results
for regional as well as semi-global/global stability results
of the design, as well as performance improvement over
conventional integral control techniques were reported,
both in the state-feedback and output-feedback cases. It
was also shown that for a special choice of the parameters,
the control is a “PIDρ−1 controller” (ρ being the relative
degree, so that for ρ = 1, 2, we have a PI/PID controller
respectively), with a conditional (anti-windup) integrator,
followed by saturation. In light of the observation on the
ubiquitous use of PI/PID type controllers in industrial
practice, and on account of the below mentioned advan-
tages

• simple structure, i.e., computational simplicity,
• constraint handling capability,
• robustness to parameter uncertainty and certain

classes of external disturbances, and
• non-requirement of the full state (i.e., output-feedback

control design)



we believe our method is especially suited to actual imple-
mentation. To that end, we consider the application of our
technique in Seshagiri and Khalil [2005] to the control of
continuous-stirred tank reactors (CSTRs), and show, via
simulation, the performance of the proposed method.

The rest of this paper is organized as follows. While the
theoretical part of our work was presented in Seshagiri
and Khalil [2005], for the sake of readability and com-
pleteness, we abstract our work in Seshagiri and Khalil
[2005] in Section 2, where we briefly describe the system
under consideration, assumptions and control objective,
and present our control design and main analytical results.
The application to a single-input single-output (SISO)
relative degree two CSTR example is presented in Section
3 1 . Section 4 discusses our results for a MIMO example,
and finally, our conclusions are presented in Section 5.

2. SYSTEM DESCRIPTION AND CONTROL DESIGN

Consider a MIMO nonlinear system with uniform vector
relative degree ρ = {ρ1, ρ2, . . . , ρm}, transformable to the
following “error normal form”

ż = φ(z, e + ν, d)
ėi = Aie

i + Bi [bi(z, e + ν, d) − r
(ρi)
i

+
m∑

j=1

aij(z, e + ν, d)(uj + δj(z, e + ν, d, w̃))]




(1)

where ei ∈ Rρi is vector of the error in the output yi and
its derivatives up to order ρi−1, z the “internal dynamics”,
r
(ρi)
i (t) is the ρith derivative of the ith component of the

reference, d = (rss, θ, wss), rss ∈ Rm is the steady-state
vector of reference values, θ a vector of unknown constant
parameters that belongs to a compact set Θ, wss is the
steady-state exogenous signal, ν(t) and w̃(t) are devia-
tions of the reference and exogenous signal respectively
from their steady-state values, and the pair (Ai, Bi) is a
controllable canonical form that represents a chain of ρi

integrators.

We design the control u to regulate the error e to zero and
then rely on a minimum-phase-like assumption ([Seshagiri
and Khalil, 2005, Assumption 4]) to guarantee bounded-
ness of z. Our design is based on combining integral action
with a continuous version of sliding mode control (SMC).
In the state-feedback case, we define the ith “sliding sur-
face” as

si = ki
0σi +

ρi−1∑
j=1

ki
je

i
j + ei

ρi
(2)

where σi is the output of

σ̇i = −ki
0σi + µi sat

(
si

µi

)
, σi(0) ∈ [−µi/ki

0, µi/ki
0] (3)

where ki
0 > 0, and the positive constants ki

1, · · · , ki
ρi−1 are

chosen such that the polynomial
λρi−1 + ki

ρi−1λ
ρi−2 + · · · + ki

1

is Hurwitz, and µi a small positive parameter, which
denotes the width of the ith boundary layer. The relation
of (3) to integral control is explained in Seshagiri and
Khalil [2005].
1 Preliminary results for a relative degree one example were pre-
sented in Seshagiri and Khalil [2001].

The control is taken as
u = Â−1(e, ν)[−F̂ (e, ν,�) + v],
vi = −βi(e, ν,�) sat(si/µi)

(4)

where Â is a known nonsingular matrix such that

A(z, e + ν, d) = {aij(·)} = Γ(z, e + ν, d)Â(e, ν)
and Γ = diag[γ1, · · · , γm], with γi(·) ≥ γ0 > 0, 1 ≤ i ≤ m,
for some positive constant γ0, F̂ (e, ν,�) is chosen to
cancel any known nominal terms in ṡ, and v to bound
the remaining terms in ṡ. The choice of the functions βi is
specified in [Seshagiri and Khalil, 2005, Section 4.1].

The control (4) can be extended to the output-feedback
case by replacing ei

j , the (j − 1)th derivative of ei
1, by

its estimate êi
j , obtained using the high-gain observers

(HGOs)
˙̂ei
j = êi

j+1 + αi
j(e

i
1 − êi

1)/(εi)j , 1 ≤ j ≤ ρi − 1
˙̂ei
ρi

= αi
ρi

(ei
1 − êi

1)/(εi)ρi

}
(5)

where εi > 0, and the positive constants αi
j are chosen such

that the roots of λρi + αi
1λ

ρi−1 + · · · + αi
ρi−1λ + αi

ρi
= 0

have negative real parts.

The parameters µi result from replacing an ideal SMC
with its continuous approximation, and hence should be
chosen “sufficiently small” to recover the performance
of the ideal SMC. Similarly, in order for the output-
feedback controller to recover the performance under state-
feedback, the high-gain observer parameters εi should
also be chosen “sufficiently small”. Therefore, one might
view µi and εi as tuning parameters and first reduce
µi gradually until the transient response of the partial
state feedback control (4) is close enough to ideal SMC
that does not contain an integrator, and then reduce
εi gradually until the transient response under output
feedback is close enough to that under state feedback. The
asymptotic results of Seshagiri and Khalil [2005] guarantee
that this tuning procedure will work. Both regional as
well as semi-global results for error convergence under
output-feedback are given in [Seshagiri and Khalil, 2005,
Theorem 1], while analytical results showing the “closeness
of trajectories”’ of the output-feedback continuous SMC
to a state-feedback ideal (discontinuous) SMC (without
integral control) are provided in [Seshagiri and Khalil,
2005, Theorem 2] 2 .

For SISO systems, the flexibility that is available in the
choice of the functions F̂ and β can be exploited to simplify
the controller (3) to

u = −k sat
(

k0σ + k1e1 + k2e2 + · · · + eρ

µ

)
(6)

This particular design, while having a simple structure, is
also natural if the control is required to be bounded. Since,
from (6), derivatives of the error up to order ρ− 1 appear
in the control, the controller is a “PIDρ−1 controller”
with anti-reset windup, and followed by saturation (see
[Seshagiri and Khalil, 2005, Section 6]). In the case of
relative degree ρ = 1 and ρ = 2, the controller (6) is
simply a specially tuned saturated PI/PID controller with
anti-windup.

2 Global results for error convergence and closeness to ideal SMC in
the state-feedback case were given in Seshagiri and Khalil [2002].



3. SISO CSTR

Our first example involves the following multicomponent
isothermal liquid-phase kinetic sequence carried out in a
CSTR [Scaratt et al., 2000, Henson and Seborg, 1997,
Chapter 3]:

A ⇀↽ B → C

The desired product concentration is component C, and
the manipulated input is the feedflow rate of the compo-
nent B. The dimensionless mass balances for A,B and C
are given by the following third-order nonlinear differential
equation

ẋ1 = 1 − (1 + Da1)x1 + Da2x
2
2

ẋ2 = −x2 + Da1x1 − Da2x
2
2 − Da3x

2
2 + u

ẋ3 = −x3 + Da3x
2
2

y = x3

(7)

where

• x1: normalized concentration CA

CAF
of species A

• x2: normalized concentration CB

CAF
of species B

• x3: normalized concentration CC

CAF
of species C

• CAF : feed concentration of species A (mol · m−1)
• u: ratio of the per-unit volumetric molar feed rate of

species B, denoted by NBF and the feed concentra-
tion CAF

• F : volumetric feed rate (m3s−1)
• V : volume of the reactor (m3)
• ki: first order rate constants (s−1)

and the Dai terms are the respective Damkőhler terms
for the reactions, defined by Da1 = k1V/F , Da2 =
k2V CAF /F , and Da3 = k3V CAF /F . The operating region
is the orthant Dx = {x ∈ R3|xi > 0}, and it is
easily verified that the system has relative degree ρ = 2,
uniformly in Dx, and that for each constant desired y = ȳ,
the system has a unique equilibrium point x = x̄, and an
equilibrium input u = ū, at which y = ȳ.

As previously stated, the control objective is to regulate y
at a desired constant value by manipulating the normal-
ized feedrate u. Similar to Scaratt et al. [2000], we assume
that the Damkőhler coefficients are unknown, and that
they constitute the unknown parameter vector θ in (??).
Note that our system formulation also allows for matched
uncertainties that are possibly dependent on the state, the
parameter and even time-varying exogenous disturbances.

The parameter dependent change of variables
e1 = x3 − ȳ, e2 = ė1 = −x3 + Da3x

2
2, z = x1 − x̄1

transforms the system into the error normal form (1), and
it is trivial to verify that the zero dynamics are ISS with
e as the driving input, and that furthermore, with e ≡ 0,
the zero dynamics are simply z = −(1 + Da1)z, which are
exponentially stable.

Equation(6) then is simply the saturated PID controller

σ̇ = −k0σ + µ sat
(

k0σ + k1e1 + e2

µ

)

u = −k sat
(

k0σ + k1e1 + e2

µ

) (8)

where k0, and k1 > 0. Also, since e2 is typically not
measured (note that even when x2 is measured, e2 = ė1 =

−y+Da3x
2
2 is dependent on the unknown parameter Da3),

we replace e2 = ė1 with its estimate ê2, obtained using the
high-gain observer

˙̂e1 = ê2 + α1(e1 − ê1)/ε
˙̂e2 = α2(e1 − ê1)/ε2

}

where ε > 0, and the positive constants α1, α2 are chosen
such that the roots of λ2 +α1λ+α2 = 0 have negative real
parts. Note that the controller we have is much simpler
than the ones in Scaratt et al. [2000] 3 that are based
on adaptive backstepping. Furthermore, our controller
is simply the industrial workhorse PID controller, with
the derivative replaced by an estimated derivative, and
integrator anti-windup.

For the purpose of simulation and to facilitate comparison
with the results of Scaratt et al. [2000], we use the following
numerical values specified in that reference: Da1 = 3.0,
Da2 = 0.5, and Da3 = 1.0, and consider stabilizing
the system at the desired output value ȳ = 0.7753,
for which choices, we have the equilibrium values x̄ =
(0.3467, 0.8796, 0.7753), ū = 1. We also choose x(0) =
(0.5, 0.5, 0.5), σ(0) = 0, ê1(0) = ê2(0) = 0, k0 = 1, k1 = 5,
k = 2, µ = 0.1, ε = 0.1, α1 = 15, and α2 = 50. Figure 1
shows the error e1 and the input u for the above numerical
values. It is clear from the figure that we achieve regulation
in spite of not knowing (or at least not specifically using
the knowledge of) the plant parameter values. However,
as seen from the figure, there is some kind of “chattering”
in the control u, which is a result of the small value of
µ. Such a chattering was also observed in the adaptive
backstepping sliding mode control (DAB-SMC) controller
of Scaratt et al. [2000].
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Fig. 1. Output-feedback control with PID controller :
Tracking error e1 = y − ȳ and input u

In the absence of integral control, we will need to make µ
small if we want small steady-state errors, as the order of
3 We can also use the more general form of the controller in (4),

with the “equivalent control” component F̂ chosen to cancel any
known/nominal terms, and the “switching gain” β(·) chosen possibly
as a function of the measures states, exogenous signals and time.
As previously mentioned, the choice (8) that we make above is
not only simpler, but also in some sense intuitively natural if the
control u is bounded in magnitude, in which case we simply choose
β(·) = k = umax, where umax is the maximum available control
magnitude.



the regulation order will in general be O(µ). A smaller
µ will thus result in a smaller steady-state error, but
at the expense of control chattering. As mentioned in
Seshagiri and Khalil [2005], as a consequence of using
integral control, we will not require µ to be small in order
to reduce the steady-state error, but only small enough
to stabilize the disturbance-dependent equilibrium point.
To illustrate this, we repeat the previous simulation with
µ = 1. Figure 2 shows the result of the simulation, and
we see that the steady-state error is still zero on account
of integral control, but that now there is no chattering in
the control 4 . For comparison, we have also shown the
error and input for a continuous SMC without integral
action, i.e., u = −k sat

(
k1e1+ê2

µ

)
, with the numerical

values for k, k1 and µ the same. Note that there is
no chattering in the control (because µ is “not small”),
but now the steady-state error is also non-zero. Without
integral control, reducing µ will make the steady-state
error smaller, but will lead to chattering again for small
enough µ. Chattering was also removed in Scaratt et al.
[2000] using a second-order sliding mode control(DAB-
SOSMC). The results reported above are comparable, i.e.,
the transient responses are at least as good (for the chosen
values), with the ones in Scaratt et al. [2000], where
the controllers are “a combination of dynamical adaptive
backstepping and sliding mode control of first and second
order order”, and are considerably more complex than our
design. In fact, we claim that the transient response in
our design is better than the one in Scaratt et al. [2000] in
that the output in our design exhibits no “overshoot”’, and
moreover, while our control is constrained with k = 2, the
maximum control value in Scaratt et al. [2000] is roughly
four times this value.
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Fig. 2. Effect of increasing µ, no chattering in control
but longer “settling time”; non-zero steady-state error
without integral control

Finally, in order to illustrate the robustness of our con-
troller to both parameter uncertainties and to matched
disturbances, we repeat the previous simulations, but with
the numerical values of the Damkőhler coefficients changed
to Da1 = 3.5, Da2 = 0.2, and Da3 = 1.5. We also assume
that there is an input additive disturbance δ(t) = 1.5�(t−
4 Note that the error does take a longer time to settle to zero, which
is to be expected

5). All other values are retained from the previous simu-
lation, except µ = 0.2. The results of the simulation are
shown in Figure 3, and is clear that good regulation is
achieved with the output-feedback controller, in spite of
parameter uncertainties and disturbances.
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Fig. 3. Effect of uncertainties (parametric and external

disturbances) on the response of the output-feedback
controller

To emphasize the contribution of our work, we mention
again that our controller is simply a saturated PID con-
troller with anti-windup with a special choice of the con-
troller gains, and the simulations above show the robust-
ness to parameter uncertainties and disturbances, with
constrained inputs, and only using output feedback.

4. MIMO CSTR

In the previous section, we considered the control of a
SISO system. Our next example is the MIMO free radi-
cal polymerization of methyl methacrylate in a constant
volume exothermic CSTR Adebekun and Schork [1989],
Kurtz et al. [2000]. The solvent is ethyl acetate, while
the reactor is benzoyl peroxide. As abstracted from Kurtz
et al. [2000], the model equations are

Ṁ =
q

V
(Mf − M) − kpMP

Ṫ =
q

V
(Tf − T ) +

(−∆H

ρcp

)
kpMP − hAc

V ρcp
(T − Tc)

İ =
q

V
(If − I) − kdI

Ṡ =
q

V
(Sf − S)

where M , T , I and S are respectively the monomer concen-
tration, reactor temperature, initiator concentration and
solvent concentration respectively, V is the reactor volume,
Mf , If and Sf are the monomer, initiator and solvent feed
concentrations respectively, Tf is the feed temperature,
q is the feed flow rate, Tc is the coolant temperature,

P =
√

2fkdI
kt

is the total concentration of live radicals,
f is the initiator efficiency, and kt is the termination rate
constant. The rate constants kp, kd follow the Arrhenius
dependence on temperature, i.e.,

kp = k
′
p exp

(−Ep

RT

)
, kd = k

′
d exp

(−Ed

RT

)



while the expression for kt is computed using the Schmidt-
Ray correlation for the gel-effect as

gt =
kt

kt0
=

{
gt1, if Vf > V̄f (T )
gt2, if Vf ≤ V̄f (T )

where

V̄f (T ) = 0.1856 − 2.965 × 10−4(T − 273.2),
gt1 = 0.10575exp[17.15Vf − 0.01715(T − 273.2)],
gt2 = 2.3 × 10−6exp[75Vf ]

where kt0 = k
′
t0exp

(−Et0
RT

)
, and Vf (M,T, I, S) is the

free volume calculated from the volume fractions of the
monomer, polymer and solvent in the reactor (see Kurtz
et al. [2000] for the functional dependence of Vf on the
temperature T and concentrations, calculated under the
assumption of ideal mixing). For the purposes of control
design, it is more convenient to write the above equations
in dimensionless form, resulting in the following state
model

ẋ1 = x1f − x1 − DapW (x)Ex(x2)x1

ẋ2 = −x2 + BDapγpW (x)Ex(x2)x1 + β(x2c − x2)
ẋ3 = x3f − x3 − DadExd(x2)x3

ẋ4 = x4f − x4

(9)

where ẋi
def= dxi

dτ , τ = tq/V , and the dimensionless
variables are defined as (see Adebekun and Schork [1989],
Kurtz et al. [2000])

• x1 = M/Mf0, x2 =
(

T−Tf

Tf

) (
Ep

RTf

)
,

• x3 = I/Mf0, x4 = S/Mf0,

• x1f = Mf/Mf0, x2c =
(

Tc−Tf

Tf

) (
Ep

RTf

)
,

• x3f = If/Mf0, x4f = Sf/Mf0,
• γp = Ep/(RTf ), β = hAc/(ρcpq),
• B = (−∆H)Mf0/(ρcpTf ), W (x) = P (·)/Mf0,
• Dap = k

′
pe

−γpMf0V/q, Dad = k
′
de

−γdγpV/q,

• Ex(x2) = exp
(

x2
1+x2/γp

)
, Exd(x2) = exp

(
γdx2

1+x2/γp

)

The control objective is to regulate the monomer concen-
tration y1 = x1 and the reactor temperature y2 = x2 by
manipulating the monomer feed concentration u1 = x1f

and the coolant temperature u2 = x2c. As in Kurtz et al.
[2000], we assume the availability of on-line measurements
of the outputs; the initiator and solvent concentrations
x3 and x4 respectively are assumed to be unmeasurable.
Furthermore, the inputs are assumed to be constrained
by 0 mol/L ≤ Mf ≤ 9 mol/L, 300K ≤ Tc ≤ 440K,
which for the nominal values of the parameters and op-
erating point specified in Kurtz et al. [2000] translate to
0 ≤ u1 ≤ 2.0535, and −0.42 ≤ u2 ≤ 2.571. For the sake of
convenience, we transform these to symmetric saturation
bounds by defining u1δ = u1 − û1, u2δ = u2 − û2, where
û1 = 1.02675, û2 = 1.0755, so that |u1δ| ≤ 1.02675 def= k1,
and |u2δ| ≤ 1.4955 def= k2.

Note that the system has well-defined vector relative
degree ρ = {1, 1}, and that for each specified equilibrium
value ȳ = (ȳ1, ȳ2), there is a unique equilibrium point
x̄ and equilibrium input ū = (ū1, ū2) at which y = ȳ.
Defining

e1 = y1 − ȳ1, e2 = y2 − ȳ2

η1 = x3 − x̄3, η2 = x4 − x̄4

where x̄3 = x3f

1+DadExd(ȳ2)
, x̄4 = x4f , we can rewrite (9)

in the form of (1). 5 It is easy to verify that the zero
dynamics are exponentially stable. The matrix A(·) in
simply diag{1, β}, so that we can take Â(·) in (4) to be the
identity. Then, the control is “decoupled” and we simple
take

σ̇1 = −k1
0σ1 + µ1sat

(
s1

µ1

)

s1 = k1
0σ1 + e1, u1 = û1 − k1sat

(
s1

µ1

)

σ̇2 = −k2
0σ2 + µ2sat

(
s2

µ2

)

s2 = k2
0σ2 + e2, u2 = û2 − k2sat

(
s2

µ2

)
(10)

where k1
0, k

2
0 > 0, and µ1, µ2 are “sufficiently small”

positive constants. This completes the design of the con-
troller, which is simply a saturated PI controller (with an
additive nominal component). The analysis of Seshagiri
and Khalil [2005] tells that the controller (10) achieves
perfect regulation (the region of attraction depends on the
values of the gains k1 and k2 though).

In order to compare results with the controller in Kurtz
et al. [2000], we use the same numerical values for the
parameters specified therein (see [Kurtz et al., 2000, Table
II]). Other numerical parameters are x(0) = (0.5, 0.5, 0.5),
σ1(0) = σ2(0) = 0, k1

0 = k2
0 = 1, µ1 = µ2 = 0.01.

As in Kurtz et al. [2000], the setpoints were chosen to
be ȳ = [1.2 0.0865]T , followed by a setpoint change to
ȳ = [0.31 1.06]T at τ = 4 s. The results are shown in Fig 4,
and it clear that the controller achieves good performance,
despite the fact that almost no plant parameter values are
explicitly used in the control design. Our results are at
least as good as the one with the MPC controller of Kurtz
et al. [2000] (as compared to Fig 3 in that reference), where
the design is much more involved.

As before, we mention the inherent robustness of this
method to parametric uncertainties since the design does
not explicitly require any knowledge of these parameter
values. Robustness to disturbances is guaranteed by the
use of the sliding mode technique, and the inclusion of
integral control. Finally, the control designs presented are
simply specially tuned versions of PI/PID controllers with
an anti-windup structure.

5. CONCLUSIONS

In this paper, we presented an approach for the output
feedback regulation of isothermic and exothermic chemical
reactors. The method is an application of our work on the
design of robust output feedback integral control for a class
of minimum phase systems. For relative degree one and
two systems, our controller can be designed simply as the
industrially popular PI/PID controllers with anti-windup.
The proposed approach offers some important advantages
including
5 Note that, even though not explicitly written, the feed solvent
concentration Sf (and hence x4f ) depend on the feed monomer
concentration u1 (Kurtz et al. [2000]).
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Fig. 4. Output regulation for the multivariable (MIMO)
polymerization reactor

• computational simplicity,
• constraint handling capability, and
• the use of only partial state and/or output feedback.

Preliminary results were also presented in an earlier paper
Seshagiri and Khalil [2001] for a SISO relative degree one
system. The contribution of this paper is the application
of our theory to higher relative degree and MIMO CSTRs.
Some numerical simulations illustrating the theoretical
results were also presented.
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