
  

  

Abstract— This paper addresses a robust predictive control 

of additive discrete time uncertain nonlinear systems. The 

controller design is characterized as an optimization problem of 

the “worst-case” objective function over an infinite moving 

horizon. A sufficient state feedback synthesis condition is 

provided in the form of a linear matrix inequality (LMI) 

optimization and will be solved online at each time step. A 

simulation example is exploited to illustrate the applicability of 

the proposed approach. 
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I. INTRODUCTION 

PC techniques have been widely accepted by industry 

and academia. On other hand, because of existence of 

uncertainty in parameter or structure of processes, MPC 

strategy may fail. Thus robustness and performance of closed 

loop system may not satisfy.  

Some algorithms with polytopic description have been 

proposed to solve state feedback robust MPC technique for 

stable linear systems with model uncertainty [1], norm 

bounded uncertain systems with input constraints [2] and 

output feedback robust MPC, such as constrained linear 

systems [3], bounded state disturbance and measurement 

noise [4], and additive but bounded state and output 

disturbances [5]. Constraints on the control effort (input) can 

be handled by adding another LMI to the LMI sets. 

In [6]the concept of asymptotically stable invariant ellipsoid 

and linear matrix inequalities is used to developed an 

efficient on-line formulation of robust constrained MPC 

algorithm. In [7] disturbance model is included in controllers 

design to enhance the robustness of MPC to achieve offset-

free control 

Robust model predictive control has been used for 

constrained linear systems with bounded disturbances [8], 

linear continuous uncertain systems [9], linear continuous 

uncertain systems with state delay and control constraints 

[10]. For discrete-time uncertain state delayed systems a 

robust memory state feedback model predictive control is 

developed in [11].  

Some well-known application of robust MPC are applied to 

CSTR problems [12-13], integrating systems at the presence 

of model uncertainty [14], and process with time-delay 

uncertainty like temperature control of a typical air-handling 

unit [15].  

 
V. Ghaffari, A. A. Safavi, V. Naghavi are with the School of Electrical 

and Computer Engineering, Shiraz University, Iran (corresponding author 

ghaffari1363ir@ yahoo.com) 

In these problems a polytopic structure is firstly developed to 

describe the uncertainty model. Then the controller design is 

characterized as the problem of minimizing an upper bound 

on the ‘worst-case’ infinite horizon objective function 

subject to constraints on the control input and plant output. 

Based on the proposed description, a linear matrix inequality 

(LMI) based MPC algorithm is employed and modified to 

design a robust controller for such a constraint process. The 

robust stability of the closed-loop Systems is guaranteed. In 

order to solve feasibility problem and assure system 

performance, some LMI conditions are proposed for the 

monotonical cost by using a new parameter dependent 

terminal weighting matrix [16]. 

They assume the system is linear. In this paper we extend 

these results to additive discrete time uncertain nonlinear 

systems. The controller design is characterized as an 

optimization problem of the “worst-case” objective function 

over infinite moving horizon. A sufficient state feedback 

synthesis condition is provided in the form of linear matrix 

inequality (LMI) optimization and will be solved online at 

each time step. A simulation example is exploited to 

illustrate the applicability of the proposed approach. 

The rest of this article is organized as follows. In Section 2, 

some mathematical preliminaries are described. Section 3 

presents an MPC control law for additive uncertain nonlinear 

systems. In order to demonstrate the validity of the approach 

a numerical example is presented in Section 4. Section 5 

provides the concluding remarks. 

 

II. MATHEMATICAL PRELIMINARY  

This section introduces 3 useful lemmas which are used in 

next section.   

Lemma 1: Schur complement lemma: for any 3 matrix 

functions ( )Q x , ( )S x and ( )R x , the following inequalities 

are equivalent: 
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Lemma 2: Barbalt's lemma 

 If 
2( )x t L∈  , ( )x t L∞∈  and  ( )x t L∞∈�   then  conclude that   

lim ( ) 0
t

x t
→∞

= . 

Lemma 3: The following conditions are equivalent [17]: 

a. There exists a symmetric matrix P >0 such that 
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b. There exist a symmetric matrix P and a matrix G such that                

0
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P A G

G A G G P

 
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+ − 
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III. MPC CONTROL LAW FOR ADDITIVE UNCERTAIN 

SYSTEM 

Consider following discrete time dynamical system:              

( 1) ( ) ( ) ( ( ))x k Ax k Bu k f x k+ = + +  (4) 

Where A  and B  are constant system matrixes and ( ( ))f x k  

is an unknown but Lipschitz bounded nonlinear term:  

( ( )) ( )f x k L x k≤       (0) 0f =      (5) 

L is a positive real constant known number. A quadratic cost 

function may be given as:  
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u k i k Ru k i k

∞

=

∞

=

= + +

+ + +

∑

∑
 (6) 

Where n nQ ×  and m m
R × are two positive definite states 

and control weights respectively. Now, consider a quadratic 

function like: 

( , ) ( | ) ( | )TV i k x k i k Px k i k= + +           

0T
P P= >   

(7) 

The objective is to obtain control sequence 

( | ), ( 1| ),..., ( | )u k k u k k u k m k+ +  to minimize  ( )J k  

( | ) 0,1,...,
( )

u k i k i m
Min J k

+ =
 (8) 

Assume that the pair ( ),A B  is stablizable by state feedback 

control law (i.e. There exists a matrix F  such that A BF+  

is a stable matrix), then control effort value at time k and 

step i can be found as: 

( | ) ( ) ( | )u k i k F k x k i k+ = +  (9) 

Assume that ( , ) ( 1, ) ( , )V i k V i k V i k∆ = + −  is less 

than a sum of two negative quadratic terms [18]: 

( , ) ( | ) ( | )

( | ) ( | )

T

T

V i k x k i k Qx k i k

u k i k Ru k i k

∆ < − + + +

− + +
 (10) 

We use this inequality later on to obtain an LMI form. If 

( )J k  is a finite value, from Barbalat lemma, we know that 

( , ) 0V k∞ =  then lim ( , ) 0
i

x i k
→∞

= . summing up ( , )V i k∆  

from zero to infinity, (i. e. 

0

( , )
i

V i k
∞

=

∆∑ ) an upper bound for 

cost function is computed as follows: 

( ) (0, ) ( | ) ( | )TJ k V k x k k Px k k γ< = <  (11) 

Defining 
1

M Pγ −=  and using Schur complement lemma, 

the equivalent matrix form is found:   

1 ( | )
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T
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x k k M

 
> 

 
 (12) 

From this inequality it is seen why ( , )V i k∆  must be less 

than sum of the two negative quadratic terms. We can rewrite 

( , )V i k∆  as: 

( , ) ( | ) ( | ) 0
Q R

V i k x k i k u k i k∆ < − + − + <  (13) 

Therefore  

0 ( 1, ) ( , )V i k V i k≤ + <                      (14) 

Then Barbalat lemma leads us to lim ( , ) 0
i

x i k
→∞

= . 

( , )V i k∆  can be written as:  
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We can rewrite (15) as: 

( ( )) ( | ) ( ( ))
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P

P Q

R
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x k i k x k i k

F k x k i k

+ + + +

− + + + +

+ + <

 (16) 

Using lipschitz nonlinearity          

( ( )) ( )f x k i L x k i+ ≤ +  (17) 

One may further simplify (16) to 

( ( ) ) ( ( ) )

( ) ( ) 0

T

T

A BF k LI P A BF k LI

P Q F k RF k

+ + + + +

− + + <
 (18) 

Define 
1M Pγ −= and 

1( )F k Y G −= and using Schur 

complement lemma twice, we have (see [6], [18]): 
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Where  FG Y=    or 
1

F YG
−=              

(19) 

The symbol * depicts a symmetric structure, and MPC 

problem is converted to optimization of an LMI problem. 

Equivalent LMI problem to above is: 

, ,Y G M
Min γ  

subject to 
(20) 
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The gain of State feedback control law is 
1( )F k YG−= .  

Since only first element of control sequence is applied to 

system, (i.e. ( | ) ( ) ( | )u k k F k x k k= ) then optimization 

problem is repeated. 

Note that ( ) ( | )x k x k k=  and ( | ) ( )u k k u k= . In Figure 

1 a schematic representation of yielded MPC is shown which 

act as a time varying state feedback control law (i.e. 

( ) ( ) ( )u k F k x k= ) where 
1( )F k YG−=  is computed at 

each sample time by an LMI optimization problem. 

 
Fig 1: representation of MPC as a time varying state feedback 

 

Remark 1: Time varying case 

Consider time varying version of the mentioned system  

( 1) ( ) ( ) ( ) ( ) ( ( ))x k A k x k B k u k f x k+ = + +  (21) 

Where 

[ ] [ ]
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It can be easily seen that an LMI description is equivalent to: 
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Remark 2: Constrain on input and output [18]. 

a) One may bound on the Euclidean norm of the control 

signal using additional LMI  
2
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b) One may bound on the Euclidean norm of the output 

signal using additional LMI  
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Remark 3: Tracking problem 

Consider the system  

( 1) ( ) ( ) ( ( ))

( ) ( )

x k Ax k Bu k f x k

y k Cx k

+ = + +

=
 (25) 

To force the output ( )y t to track a reference signal ( )w t , a 

cost function like  
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must be minimized.  

If this system is output feedback stablizable, then with the 

same procedure it can been shown that  the resulted control 

law is ( )( | ) ( ) ( ) ( | )u k i k F k w k i y k i k+ = + − + . 

 Note that ( ) ( | )y k y k k=  and since only first computed 

control input is applied to plant (i.e.  ( | ) ( )u k k u k= ) , final 

control law is ( )( ) ( ) ( ) ( )u k F k w k y k= −  as illustrated in 

Figure 2. The result is a time varying static control 

law 1( )F k YG−=  so that ( )F k  is computed at each sample 

time by an LMI optimization problem. 

 
Fig 2: representation of MPC as a time varying output feedback 

IV. SIMULATION RESULT  

To show the effectiveness of the proposed approach, we 

consider the discrete time dynamical system (4), where the 

linear terms are 

0 1 0

0 0 1

0.2 0.1 1

A

 
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  

,

0

0
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B
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  

 , T=1 second 

and the nonlinear term is 

1 2

2 2

3 3
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10 10

T

k k
k

k k

x x
f x

x x

 
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+ + 
 

When 0.1L = , The Lipschitz nonlinearity is satisfied. This 

discrete time system starts from the initial condition 

[ ]0
2 3 5

T
x = − − . In cost function the weights are 

selected as 
3 3Q I ×= , 100R = . The state response and control 

effort is seen in Figure 3 and 4 respectively. 



  

 
Fig 3: state response  

 
Fig 4: applied control effort 

In this example, similar to LQR problem, weights R , Q  are 

design parameter and can be selected such that the best 

response is obtained. 

V. CONCLUSION  

In this paper based on LMI concepts, a time depended state 

feedback control law is proposed to control an additive 

discrete time uncertain systems. Each step by solving an LMI 

problem, a state feedback gain is computed. Then a suitable 

control effort is generated and applied to the dynamical 

system. Finally, the approach is applied to a nonlinear 

discrete time system which nonlinear term is norm bounded. 

Simulation results show the efficiency of the proposed 

approach. 

 

 

REFERENCES 

                                                           
[1] Marco A. Rodrigues, Darci Odloak, MPC for stable linear systems with 

model uncertainty, Automatica 39 (2003) 569 – 583. 

                                                                                                   
 

[2] S.M. Lee, Ju H. Park, Robust model predictive control for norm-

bounded uncertain systems using new parameter dependent terminal 

weighting matrix, Chaos, Solitons and Fractals 38 (2008) 199–208. 

 

[3] D.Q. Mayne, S.V. Rakovi´c, R. Findeisen, F. Allgower, Robust output 

feedback model predictive control of constrained linear systems,  

Automatica 42 (2006) 1217 – 1222. 

 

[4] Baocang Ding,Yugeng Xi, Marcin T. Cychowski, Thomas O’Mahony, 

A synthesis approach for output feedback robust constrained model 

predictive control, Automatica 44 (2008) 258–264. 

 

[5] D.Q. Mayne, S.V. Rakovi¢, R. Findeisen, F. Allgöwer, Robust output 

feedback model predictive control of constrained linear systems: Time 

varying case, Automatica 45 (2009) 2082-2087. 

 

[6] Zhaoyang Wan, Mayuresh V. Kothare, An efficient on-line formulation 

of robust model predictive control using linear matrix inequalities, 

Automatica 39 (2003) 837 – 846. 

 

[7] Gabriele Pannocchia, Robust disturbance modeling for model predictive 

control with application to multivariable ill-conditioned processes, Journal 

of Process Control 13 (2003) 693–701. 

 

[8] D.Q. Mayne, M.M. Seron, S.V. Rakovi´c, Robust model predictive 

control of constrained linear systems with bounded disturbances, 

Automatica 41 (2005) 219 – 224. 

 

[9] Xiaohua LIU, Chunyan HAN, Robust model predictive control of 

continuous uncertain systems, Jrl Syst Sci & Complexity (2008) 21: 267-

275 

 

[10] Chunyan HAN, Xiaohua LIU, Huanshui ZHANG, Robust model 

predictive control for continuous uncertain systems with state delay, J 

Control Theory Appl 2008 6 (2) 189–194 

 

[11] D.H. Ji, Ju H. Park, W.J. Yoo, S.C. Won, Robust memory state 

feedback model predictive control for discrete-time uncertain state delayed 

systems, Applied Mathematics and Computation 215 (2009) 2035–2044 

 

[12] Myung-June Park, Hyun-Ku Rhee, LMI-based robust model predictive 

control for a continuous MMA polymerization reactor, Computers and 

Chemical Engineering 25(2001) 1513–1520. 

 

[13] Fen Wu, LMI based robust model predictive control and its application 

to an industrial CSTR problem, journal of process control 11(2001) 649-

659. 

 

[14] R.A.R. Cano, D. Odloak, Robust model predictive control of 

integrating processes, Journal of Process Control 13 (2003) 101–114. 

 

[15] Gongsheng Huang, Shengwei Wang, Use of uncertainty polytope to 

describe constraint processes with uncertain time-delay for robust model 

predictive control applications, ISA Transactions 48 (2009) 503-511. 

 

[16] Wei-Jie Mao, Robust stabilization of uncertain time-varying discrete 

systems and comments on “an improved approach for constrained robust 

model predictive control”, Automatica 39 (2003) 1109 – 1112. 

 

[17] M. C. de Olivera, J. C. Geromel, J. Bernussou, An LMI optimization 

approach to multi objective controller design for discrete-time systems, in 

Proc. 38th Conf. Decision and Control (USA), pp. 3611–3616, 1999. 

  

[18] F. Cuzzola, J. Jeromel, M. Morari, An improved approach for 

constrained robust model predictive Control, Automatica, vol. 38, pp. 

1183–1189, 2002. 


