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Abstract—The robust adaptive beamforming (RAB) problem
for general-rank signal model with an additional positive semi-def-
inite constraint is considered. Using the principle of the worst-case
performance optimization, such RAB problem leads to a differ-
ence-of-convex functions (DC) optimization problem. The existing
approaches for solving the resulted non-convex DC problem are
based on approximations and find only suboptimal solutions. Here,
we aim at finding the globally optimal solution for the non-convex
DC problem and clarify the conditions under which the solution
is guaranteed to be globally optimal. Particularly, we rewrite
the problem as the minimization of a one-dimensional optimal
value function (OVF). Then, the OVF is replaced with another
equivalent one, for which the corresponding optimization problem
is convex. The new one-dimensional OVF is minimized iteratively
via polynomial time DC (POTDC) algorithm. We show that the
POTDC converges to a point that satisfies Karush-Kuhn-Tucker
(KKT) optimality conditions, and such point is the global optimum
under certain conditions. Towards this conclusion, we prove that
the proposed algorithm finds the globally optimal solution if the
presumed norm of the mismatch matrix that corresponds to the
desired signal covariance matrix is sufficiently small. The new
RAB method shows superior performance compared to the other
state-of-the-art general-rank RAB methods.

Index Terms—Difference-of-convex functions (DC) program-
ming, non-convex programming, semi-definite programming
relaxation, robust adaptive beamforming, general-rank signal
model, polynomial time DC (POTDC).

I. INTRODUCTION

I T is well known that when the desired signal is present in
the training data, the performance of adaptive beamforming

methods degrades dramatically in the presence of even a very
slight mismatch in the knowledge of the desired signal covari-
ance matrix. The mismatch between the presumed and actual
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source covariance matrices occurs because of, for example, dis-
placement of antenna elements, time varying environment, im-
perfections of propagation medium, etc. The main goal of any
robust adaptive beamforming (RAB) technique is to provide ro-
bustness against any such mismatches.
Most of the RAB methods have been developed for the case

of point source signals when the rank of the desired signal co-
variance matrix is equal to one [1]–[11]. Among the principles
used for such RAB methods design are i) the worst-case perfor-
mance optimization [2]–[6]; ii) probabilistic based performance
optimization [8]; and iii) estimation of the actual steering vector
of the desired signal [9]–[11]. In many practical applications
such as, for example, the incoherently scattered signal source or
source with fluctuating (randomly distorted) wavefront, the rank
of the source covariance matrix is higher than one. Although the
RAB methods of [1]–[11] provide excellent robustness against
any mismatch of the underlying point source assumption, they
are not perfectly suited to the case when the rank of the desired
signal covariance matrix is higher than one.
The RAB for the general-rank signal model based on the ex-

plicit modeling of the error mismatches has been developed in
[12] based on the worst-case performance optimization prin-
ciple. Although the RAB of [12] has a simple closed form so-
lution, it is overly conservative because the worst-case correla-
tion matrix of the desired signal may be indefinite or even nega-
tive definite [13]–[15]. Thus, less conservative approaches have
been developed in [13]–[15] by considering an additional posi-
tive semi-definite (PSD) constraint to the worst-case signal co-
variance matrix. The major shortcoming of the RABmethods of
[13]–[15] is that they find only a suboptimal solution and there
may be a significant gap to the global optimal solution. For ex-
ample, the RAB of [13] finds a suboptimal solution in an iter-
ative way, but there is no guarantee that such iterative method
converges [15]. A closed-form approximate suboptimal solu-
tion is proposed in [14], however, this solution may be quite far
from the globally optimal one as well. All these shortcomings
motivate us to look for new efficient ways to solve the afore-
mentioned non-convex problem globally optimally.1

We propose a new method that is based on recasting the orig-
inal non-convex difference-of-convex functions (DC) program-
ming problem as the minimization of a one dimensional optimal
value function (OVF). Although the corresponding optimiza-
tion problem of the newly introduced OVF is non-convex, it can
be replaced with another equivalent problem. Such optimiza-
tion problem is convex and can be solved efficiently. The new

1Some preliminary results have been presented in [16].
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one-dimensional OVF is then minimized by the means of the
polynomial time DC (POTDC) algorithm (see also [17], [18]).
We prove that the point found by the POTDC algorithm for
the RAB for general-rank signal model with positive semi-def-
inite constraint is a Karush-Kuhn-Tucker (KKT) optimal point.
Moreover, we prove a number of results that lead us to the equiv-
alence between the claim of global optimality for the problem
considered and the convexity or strict quasi-convexity of the
newly obtained one-dimensional OVF. The global optimality of
the proposed POTDC method is then proved under some con-
ditions. As an additional check, we also develop a tight lower-
bound for such OVF that is used in the simulations to further
confirming global optimality.
The rest of the paper is organized as follows. System model

and preliminaries are given in Section II, while the problem
is formulated in Section III. The new proposed method is
developed in Section IV followed by our simulation results in
Section V. Finally, Section VI presents our conclusions. This
paper is reproducible research, and the software needed to
generate the simulation results can be obtained from the IEEE
Xplore together with the paper.

II. SYSTEM MODEL AND PRELIMINARIES

The narrowband signal received by a linear antenna array
with omni-directional antenna elements at the time instant
can be expressed as

(1)

where , , and are the statistically independent
vectors of the desired signal, interferences, and noise, respec-
tively. The beamformer output at the time instant is given as

(2)

where is the complex beamforming vector of the
antenna array and stands for the Hermitian transpose.
The beamforming problem is formulated as finding the beam-
forming vector which maximizes the beamformer output
signal-to-interference-plus-noise ratio (SINR) given as

(3)

where and
are the desired signal and interfer-

ence-plus-noise covariance matrices, respectively, and
stands for the statistical expectation.
Depending on the nature of the desired signal source, its cor-

responding covariance matrix can be of an arbitrary rank, i.e.,
, where rank denotes the rank oper-

ator. Indeed, in many practical applications, for example, in the
scenarios with incoherently scattered signal sources or signals
with randomly fluctuating wavefronts, the rank of the desired
signal covariance matrix is greater than one [12]. The only
particular case in which, the rank of is equal to one is the
case of the point source.

The interference-plus-noise covariance matrix is typ-
ically unavailable in practice and it is substituted by the data
sample covariance matrix

(4)

where is number of the training data samples. The problem
of maximizing the SINR (3) (here we always use sample ma-
trix estimate instead of ) is known as minimum vari-
ance distortionless response (MVDR) beamforming and can be
mathematically formulated as

(5)

The solution to the MVDR beamforming problem (5) can be
found as [1]

(6)

which is known as the sample matrix inversion (SMI) MVDR
beamformer for general-rank signal model. Here stands
for the principal eigenvector operator.
In practice, the actual desired signal covariance matrix

is usually unknown and only its presumed value is avail-
able. The actual source correlation matrix can be modeled
as , where and denote an unknown
mismatch and the presumed correlation matrices, respectively.
It is well known that the MVDR beamformer is very sensitive
to such mismatches [12]. RABs also address the situation
when the sample estimate of the data covariance matrix (4)
is inaccurate (for example, because of small sample size) and

, where is an unknown mismatch matrix to
the data sample covariance matrix. In order to provide robust-
ness against the norm-bounded mismatches and

(here denotes the Frobenius norm of a matrix),
the RAB of [12] uses the worst-case performance optimization
principle of [2] and finds the solution as

(7)

Although the RAB of (7) has a simple closed-form expression,
it is overly conservative because the constraint that the matrix

has to be PSD is not considered [13]. For example,
the worst-case desired signal covariance matrix in (7)
can be indefinite or negative definite if is rank deficient.
Indeed, in the case of incoherently scattered source, has the
following form , where
denotes the normalized angular power density, is the desired
signal power, and is the steering vector towards direction .
For a uniform angular power density on the angular bandwidth
, the approximate numerical rank of is equal to
[19]. This leads to a rank deficient matrix if the angular

power density does not cover all the directions. Therefore, the
worst-case covariance matrix is indefinite or negative
definite. Note that the worst-case data sample covariance matrix

is always positive definite.
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III. PROBLEM FORMULATION

Decomposing as , the RAB problem for a
norm-bounded mismatch to the matrix is given as
[13]

(8)

For every in the optimization problem (8) whose norm is less
than or equal to , the expression
represents a non-convex quadratic constraint with respect to .
Because there exists infinite number of mismatches , there
also exists infinite number of such non-convex quadratic con-
straints. By finding the minimum possible value of the quadratic
term with respect to for a fixed ,
the infinite number of such constraints can be replaced with a
single constraint. Hence, we consider the following optimiza-
tion problem

(9)

This problem is convex and its optimal value can be expressed
as a function of as given by the following lemma.
Lemma 1: The optimal value of the optimization problem (9)

as a function of is equal to

otherwise.
(10)

Proof: See Appendix I-A.
It follows from (10) that the desired signal can be totally re-

moved from the beamformer output if . Based
on Lemma 1, the constraint in (8) can be equivalently replaced
by the constraint

(11)

Moreover, the maximum of the quadratic term
in the objective function of the problem in (8) with respect to
, can be easily derived as . There-

fore, the RAB problem (8) can be equivalently written in a sim-
pler form as

(12)

Due to the non-convex DC constraint, the problem (12) is a
non-convex DC programming problem [17], [18]. DC optimiza-
tion problems are believed to be NP-hard in general [20], [21].
There is a number of methods that can be applied to address
DC programming problems of type (12). Among these methods
are the generalized poly block algorithm, the extended gen-
eral power iterative (GPI) algorithm [22], DC iteration-based
method [23], etc. However, the existing methods do not guar-
antee to find the globally optimal solution of a DC programming
problem in polynomial time.

Recently, the problem (12) has also been suboptimally solved
using an iterative semi-definite relaxation (SDR)-based algo-
rithm in [13] which also does not result in the globally optimal
solution and for which the convergence even to a KKT optimal
point is not guaranteed. A closed-form suboptimal solution for
the aforementioned non-convex DC problem has been also de-
rived in [14]. Despite its computational simplicity, the perfor-
mance of the method of [14] may be far from the global op-
timum and even the KKT optimal point. Another iterative algo-
rithm has been proposed in [15], but it modifies the problem (12)
and solves the modified problem instead, which again gives no
guarantees of finding the globally optimal solution of the orig-
inal problem (12).

IV. NEW PROPOSED METHOD

A. Main Idea and OVF

Here, we aim at solving the problem (12) globally optimally
in polynomial time. For this goal, we design a POTDC-type al-
gorithm (see also [17], [18]) that can be used for solving a class
of DC programming problems in polynomial time. By intro-
ducing the auxiliary optimization variable and setting

, the problem (12) can be equivalently rewritten
as

(13)

Note that is restricted to be greater than or equal to one be-
cause is greater than or equal to one due to the constraint
of the problem (12). For future needs, we find the set of all ’s
for which the problem (13) is feasible. Let us define the fol-
lowing set for a fixed value of

(14)

It is trivial that for every , the quadratic term
is non-negative as is a positive semi-definite

matrix. Using the minimax theorem [24], it can be easily veri-
fied that the maximum value of the quadratic term
over is equal to and
this value is achieved by

(15)

Here stands for the largest eigenvalue operator. Due to
the fact that for any , the scaled vector lies
inside the set , the quadratic term can take
values only in the interval
over .
Considering the later fact and also the optimization problem

(13), it can be concluded that is feasible if and only if
which implies that

(16)
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or, equivalently, that

(17)

The function is strictly increasing and it is
also less than or equal to one for . Therefore, it can be
immediately found that the problem (13) is infeasible for any

if . Thus, hereafter, it is assumed that
. Moreover, using (17) and the fact that the

function is strictly increasing, it can be found that
the feasible set of the problem (13) corresponds to

(18)

As we will see in the following sections, for developing the
POTDC algorithm for the problem (13), an upper-bound for the
optimal value of in (13) is needed. Such upper-bound is ob-
tained in terms of the following lemma.
Lemma 2: The optimal value of the optimization

variable in the problem (13) is upper-bounded by

, where is
any arbitrary feasible point of the problem (13).

Proof: See Appendix I-B.
Using Lemma 2, the problem (13) can be equivalently stated

as

(19)

where

(20)

and

(21)

For a fixed value of , the inner optimization problem in (19) is
non-convex with respect to . Based on the inner optimization
problem in (19) when is fixed, we define the following OVF

(22)

Using the OVF (22), the problem (19) can be equivalently
expressed as

(23)

The corresponding optimization problem of for a fixed
value of is non-convex. In what follows, we aim at replacing

with an equivalent OVF whose corresponding optimiza-
tion problem is convex.
Introducing the matrix and using the fact that

for any arbitrary matrix , (here
stands for the trace of a matrix), the OVF (22) can be equiva-
lently recast as

(24)

By dropping the rank-one constraint in the corresponding opti-
mization problem of for a fixed value of , ,
a new OVF denoted as can be defined as

(25)

For brevity, we will refer to the optimization problems that
correspond to the OVFs and when is fixed, as
the optimization problems of and , respectively. Note
also that compared to the optimization problem of , the op-
timization problem of is convex. Moreover, it is easy to
check that the optimization problem of is a hidden convex
problem, i.e., the duality gap between this problem and its dual
is zero [25]–[28]. Since both of the optimization problems of

and have the same dual problem, it can be immedi-
ately concluded that the OVFs and are equivalent,
i.e., for any . Furthermore, based on
the optimal solution of the optimization problem of when
is fixed, the optimal solution of the optimization problem of
can be constructed [25]–[28]. Based on the later fact, the

original problem (23) can be expressed as

(26)

It is noteworthy to mention that based on the optimal solu-
tion of (26) denoted as , we can easily obtain the optimal
solution of the original problem (23) or, equivalently, the op-
timal solution of the problem (19). Specifically, since the OVFs

and are equivalent, is also the optimal solution
of the problem (23) and, thus, also the problem (19). Moreover,
the optimization problem of is convex and can be easily
solved. In addition, using the results in [25]–[28] and based on
the optimal solution of the optimization problem of , the
optimal solution of the optimization problem of can be
constructed. Thus, we concentrate on the problem (26).
Since for every fixed value of , the corresponding optimiza-

tion problem of is a convex semi-definite programming
(SDP) problem, one possible approach for solving (26) is based
on exhaustive search over . In other words, can be found
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by using an exhaustive search over a fine grid on the interval
of . Although this search method is inefficient, it can be
used as a benchmark.
Using the definition of the OVF , the problem (26) can

be equivalently expressed as

(27)

Note that replacing by results in a much simpler
problem. Indeed, compared to the original problem (19), in
which the first constraint is non-convex, the corresponding
first constraint of (27) is convex. All the constraints and the
objective function of the problem (27) are convex except for the
constraint which is non-convex only
in a single variable . It makes the problem (27) non-convex
overall. This single non-convex constraint can be rewritten as

where all the terms are linear
with respect to and except for the concave term of .
The latter constraint can be handled iteratively by building
a POTDC-type algorithm (see also [17], [18]) based on the
iterative linear approximation of the non-convex term
around suitably selected points. It is interesting to mention that
this iterative linear approximation can be also interpreted in
terms of the DC-iteration approach over the single non-convex
term . The fact that iterations are needed only over a single
variable helps to reduce dramatically the number of iterations as
compared to the traditional DC-iteration approach and allows
for simple algorithm shown below.

B. Iterative POTDC Algorithm

Let us consider the optimization problem (27) and replace
the term by its linear approximation around , i.e.,

. It leads to the following SDP problem

(28)

To demonstrate the POTDC algorithm graphically and also to
see how the linearization points are selected in different itera-
tions, let us define the following OVF based on the optimization
problem (28)

(29)

where in denotes the linearization point. The OVF
can be also obtained through in (25) by replacing

the term in with its linear
approximation around . Since and its linear approxima-
tion have the same values at , and take the same
values at this point. The following lemma establishes the rela-
tionship between the OVFs and .
Lemma 3: The OVF is a convex upper-bound of
for any arbitrary , i.e., ,
and is convex with respect to . Furthermore,

the OVFs and are directionally differentiable at
the point and the values of these OVFs as well as their
right and left derivatives are equal at . In other words,
under the condition that is differentiable at , is
tangent to at the point .

Proof: See Appendix I-C.
In what follows, we explain intuitively how the proposed

POTDC method works. For the sake of clarity, it is assumed
in this explanation only that the OVF is differentiable
over the interval , however, similar interpretation can
be made generally even for non-differentiable . Moreover,
as we will see later, the differentiability of the OVF is not
needed for establishing the optimality results for the POTDC
method.
Let us consider an arbitrary point, denoted as ,

as an initial linearization point, i.e., . Based on Lemma
3, is a convex function with respect to which is the
tangent to at the linearization point , and it is also
an upper-bound to . Let denote the global minimizer
of that can be easily obtained due to the convexity of

with polynomial time complexity.
Since is the tangent to at and it is

also an upper-bound for , it can be concluded that is a
descent point for , i.e., as it is shown in
Fig. 1. Specifically, the fact that is the tangent to
at and is the global minimizer of implies
that

(30)

Furthermore, since is an upper-bound for ,
. Due to the later fact and also the (30), it is

concluded that .
Choosing as the linearization point in the second itera-

tion, and finding the global minimizer of over the in-
terval denoted as , another descent point can be ob-
tained, i.e., . This process is continued until
convergence.
The iterative descent method can be described as shown in

Algorithm 1. The following lemma about the convergence of
Algorithm 1 and the optimality of the solution obtained by this
algorithm is in order. Note that this lemma makes no assump-
tions about the differentiability of the OVF .
Lemma 4: The following statements regarding Algorithm 1

are true:
i) The optimal value of the optimization problem in Algo-
rithm 1 is non-increasing over iterations, i.e.,
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Fig. 1. Iterative method for minimizing the OVF . The convex OVF
is the upper-bound to which is tangent to it at , and its

minimum is denoted as . The point is used to establish another convex
upper-bound function denoted as and this process continues.

ii) The sequence of the optimal values in Algorithm 1 con-
verges. Note that the termination condition is not consid-
ered for this statement.

iii) If Algorithm 1 converges (without considering termina-
tion condition), such a limiting point is regular and it sat-
isfies the KKT optimality conditions.
Proof: See Appendix I-D.

Algorithm 1: The iterative POTDC algorithm

Require: An arbitrary , the termination
threshold , set equal to 1.

repeat

Solve the following optimization problem using
to obtain and

and set

,

,

until

for .

Note that the termination condition in Algorithm 1, i.e.,

is used for stopping the algorithm when the value achieved is
deemed to be close enough to the optimal solution. The fact
that the sequence of optimal values generated by Algorithm 1 is
non-increasing and convergent has been used for choosing the
termination condition. Despite its simplicity, this termination
condition may stop the iterative algorithm prematurely. In order
to avoid this situation, one can define the termination condition
based on the approximate satisfaction of the KKT optimality
conditions.
The point obtained by Algorithm 1 is guaranteed to be the

global optimum of the problem considered if the OVF
is a convex function of . It is also worth noting that even a
more relaxed property of the OVF is sufficient to guar-
antee global optimality. Specifically, if defined in (25) is
a strictly quasi-convex function of , then it is still
guaranteed that we find the global optimum of the optimization
problem (12) [29].
The worst-case computational complexity of a general stan-

dard SDP problem can be expressed as ,
where and denote, respectively, the number of constraints
and the number of variables of the standard SDP problem [30]
and stands for the big-O (the highest order of complexity).
The total number of variables in the SDP problem in Algorithm
1, which includes the real and imaginary parts of and the real
variable , is equal to . The computational complexity
of Algorithm 1 is equal to that of the SDP optimization problem
in Algorithm 1, that is, thus , times the number of itera-
tions (see also Simulation Example 1 in the next section).
The RAB algorithm of [13] is iterative as well and its com-

putational complexity is equal to times the number
of iterations. The complexity of the RABs of [12] and [14]
is . The comparison of the overall complexity of the
proposed POTDC algorithm with that of the DC iteration-based
method is also performed in Simulation Example 4 in the next
section. Although the computational complexity of the new
proposed method may be slightly higher than that of some other
RABs, it finds the globally optimal solution as it is shown in
Section IV-C. Moreover, it results in a superior performance as
it is shown in Section V. Thus, next we show that under certain
conditions the proposed POTDC method is guaranteed to find
the globally optimal solution of a reformulated optimization
problem that corresponds to the general-rank RAB problem.

C. Global Optimality

For studying the conditions under which the proposed
POTDC method is guaranteed to find the global optimum of
(12), we consider a reformulation of (12). Specifically, since
this problem is feasible, it can be equivalently expressed as

(31)

Note that the constraint can be dropped as
maximizing the objective function in (31) implies that this con-
straint is satisfied at the optimal point. By dropping this con-
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straint, the problem (31) can be further expressed as the fol-
lowing homogenous problem

(32)

Since (32) is homogenous, without loss of generality, the term
can be fixed to be equal to one. By doing so

and introducing the auxiliary variable , the problem (32) can
be equivalently rewritten as

(33)

where takes values in a closed interval as it is shown next.
Specifically, the problem (33) is feasible if and only if

where ,
, and stands for the smallest eigenvalue oper-

ator. In similar steps as in Section IV-A, i.e., by introducing
and relaxing rank-one constraint, (33) can be

equivalently recast as

(34)

where the optimal solution of (33) can be extracted precisely
from the optimal solution of the problem (34). Thus, hereafter
we focus on the problem (34). This problem is a DC optimiza-
tion problem which can be addressed using the POTDC algo-
rithm. Specifically, the proposed POTDCmethod can be applied
to (34) by successively linearizing the term around suitably
selected points. Moreover, all the related results hold true in this
case. In order to find the conditions which guarantee the global
optimality of the POTDCmethod, let us introduce the following
OVF

(35)

Similar to the convexity proof for the OVF (see Lemma
4), it can be easily verified that the OVF is concave. Based
on the definition of the OVF , the problem (34) can be
further simplified as

(36)

Note that since is a concave function, is also a
concave function and as a result, the objective function of the
problem (36) is the difference of two concave functions. The fol-
lowing theorem shows when the problem (34), or equivalently,
(36) is guaranteed to be solvable globally optimally by our pro-
posed method.
Theorem 1: For any arbitrary and whose

corresponding OVF is strictly concave and continuously
differentiable, and provided that is sufficiently small, the pro-
posed POTDCmethod finds the globally optimal solution of the
problem (34), or equivalently, (36).

Proof: See Appendix I-E. The explicit condition for to be
sufficiently small is specified in the proof and it is not repeated
in the theorem formulation because of the space limitations.
Note that the result of Theorem 1 also holds when OVF

is non-differentiable. In this case, the proof follows
similar steps, but it is slightly more technical and therefore
omitted because of the space limitations.
Additionally, note that Theorem 1 does not imply that if

is not sufficiently small or the OVF is not continuously
differentiable, the POTDC method does not find the globally
optimal solution. In other words, the condition of the theorem is
sufficient but not necessary. Indeed, according to our numerical
results, the globally optimal solution is always achieved by the
proposed method.

D. Lower-Bounds on the Optimal Value of Problem (27)

We also aim at developing a tight lower-bound for the optimal
value of the optimization problem (27). Such lower-bound is
also used for assessing the performance of the proposed iterative
algorithm.
As it was mentioned earlier, although the objective func-

tion of the optimization problem (27) is convex, its feasible
set is non-convex due to the second constraint of (27). A
lower-bound for the optimal value of (27) can be achieved by
replacing the second constraint of (27) by its corresponding
convex-hull. However, such lower-bound may not be tight. In
order to obtain a tight lower-bound, we can divide the sector

into subsectors and solve the optimization problem
(27) over each subsector in which the second constraint of (27)
has been replaced with the corresponding convex hull. The
minimum of the optimal values of such optimization problem
over the subsectors is the lower-bound for the problem (27).
It is obvious that by increasing , the lower-bound becomes
tighter.

V. SIMULATION RESULTS

Let us consider a uniform linear array (ULA) of 10 omni-di-
rectional antenna elements with the inter-element spacing of
half wavelength. Additive noise in antenna elements is mod-
eled as spatially and temporally independent complex Gaussian
noise with zero mean and unit variance. Throughout all sim-
ulation examples, it is assumed that in addition to the desired
source, an interference source with the interference-to-noise
ratio (INR) of 30 dB impinges on the antenna array. For ob-
taining each point in the simulation examples, 100 independent
runs are used unless otherwise is specified and the sample data
covariance matrix is estimated using snapshots.
The new proposed method is compared in terms of the output

SINR to the general-rank RAB methods of [12]–[14] and to
the rank-one worst-case RAB of [2]. Moreover, the proposed
method and the aforementioned general-rank RAB methods are
also compared in terms of the achieved values for the objective
function of the problem (12). The diagonal loading parameters
of and are chosen for the proposed
RAB and the RAB methods of [13] and [14], and the parame-
ters of and are chosen for the RAB of [12].
The initial point (see Algorithm 1) in the first iteration of
the proposed method equals to unless otherwise is
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Fig. 2. Example 1: Output SINR versus SNR;INR=30 dB and .

specified. The termination threshold for the proposed method
is chosen to be equal to . For obtaining a lower-bound on
the optimal value of the optimization problem (27), the interval

is divided in to 50 subsectors.

A. Simulation Example 1

In this example, the desired and interference sources are lo-
cally incoherently scattered with Gaussian and uniform angular
power densities with central angles of 30 and 10 , respec-
tively. The angular spreads of the desired and the interfering
sources are assumed to be 4 and 10 , respectively. The pre-
sumed knowledge of the desired source is different from the ac-
tual one and is characterized by an incoherently scattered source
with Gaussian angular power density whose central angle and
angular spread are 34 and 6 , respectively. Note that, the pre-
sumed knowledge about the shape of the angular power density
of the desired source is correct while the presumed central angle
and angular spread deviate from the actual one.
In Figs. 2 and 3, the output SINR and the objective func-

tion values of the problem (12), respectively, are plotted versus
SNR. It can be observed from the figures that the proposed new
method based on the POTDC algorithm has superior perfor-
mance over the other RABs. Moreover, Fig. 3 confirms that the
new proposed method achieves the global minimum of the opti-
mization problem (12) since the corresponding objective value
coincides with the lower-bound on the objective function of
the problem (12). Fig. 4 shows the convergence of the iterative
POTDC method in terms of the average of the optimal value
found by the algorithm over iterations for SNR=15 dB. It can
be observed that the proposed algorithm converges to the global
optimum in about 4 iterations.

B. Simulation Example 2

In the second example, we study how the rank of the actual
correlation matrix of the desired source affects the perfor-
mance of the proposed general-rank RAB and other methods

Fig. 3. Example 1: Objective function value of the problem (12) versus SNR;
INR=30 dB, and .

Fig. 4. Example 1: Objective function value of the problem (12) versus the
number of iterations;SNR=15 dB, INR=30 dB, and .

tested. The same simulation set up as in the previous example is
considered. The only difference is that the actual angular spread
of the desired source varies and so does the actual rank of the
desired source covariance matrix. The angular spread of the de-
sired user is chosen to be 1 , 2 , 5 , 9 , and 14 . Figs. 5 and
6 show, respectively, the output SINR and the objective func-
tion values of the problem (12) versus the rank of the actual
correlation matrix of the desired source for different methods
when SNR=10 dB. It can be seen from the figures that the pro-
posedmethod outperforms the other methods in all rank in terms
of the objective value of the optimization problem (12) and it
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Fig. 5. Example 2: Output SINR versus the actual rank of ; SNR=10 dB,
INR=30 dB, and .

Fig. 6. Example 2: Objective function value of the problem (12) versus the
actual rank of ; SNR=10 dB, INR=30 dB, and .

achieves the globally optimal solution as it coincides with the
lower-bound.

C. Simulation Example 3

In this example, we also consider the locally incoherently
scattered desired and interference sources. However, compared
to the previous examples, there is a substantial error in the
knowledge of the desired source angular power density.
The interference source is modeled as in the previous exam-

ples, while the angular power density of the desired source is

Fig. 7. Example 3: Actual and presumed angular power densities of general-
rank source.

Fig. 8. Example 3: Output SINR versus SNR; INR=30 dB and .

assumed to be a truncated Laplacian function distorted by se-
vere fluctuations. The central angle and the scale parameter of
the Laplacian distribution is assumed to be 30 and 0.1, respec-
tively, and it is assumed to be equal to zero outside of the interval
[15 , 45 ] as it has been shown in Fig. 7. The presumed knowl-
edge of the desired source is different from the actual one and is
characterized by an incoherently scattered source with Gaussian
angular power density whose central angle and angular spread
are 34 and 6 , respectively.
Fig. 8 depicts the corresponding output SINR of the problem

(12) obtained by the beamforming methods tested versus SNR.
It can be concluded from the figure that the proposed method
has superior performance over the other methods.
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TABLE I
AVERAGE NUMBER OF THE ITERATIONS

TABLE II
AVERAGE CPU TIME

D. Simulation Example 4

Finally, we compare the efficiency of the proposed POTDC
method to that of the DC iteration-based method that can be
written for the problem (12) as

(37)

where denotes the inner product, stands for the gra-
dient operator, and the function is replaced with
the first two terms of the Taylor expansion of around

. First, is initialized, and in the next iterations,
is selected as the optimal obtained from solving (37) in the
previous iteration. Thus, the iterations are performed over the
whole vector of variables of the problem.
The simulation set up is the same as in Simulation Example 1

except that different number of antennas is used. For a fair com-
parison, the initial point in the proposed method and in
(37) are chosen randomly. Particularly, the initialization point
for the proposed POTDC method is chosen uniformly over the
interval while the imaginary and real parts of the initial
vector in (37) are chosen independently as zero mean, unit
variance, Gaussian random variables. If the so-generated
is not feasible, another initialization point is generated and this
process continues until a feasible point is resulted. Note that the
time which is consumed during the generation of a feasible point
is negligible and it has not been considered in the average CPU
time comparison. Table I shows the average number of iterations
till convergence for the aforementioned methods versus the size
of the antenna array. The termination threshold is set to ,

, and each number in the table is obtained by av-
eraging the results over 200 runs. It can be seen from the table
that the number of iterations for the proposed method is essen-
tially fixed while it increases for the DC-iteration method as the
size of the array, and thus the size of the problem (12), increases.
The latter phenomenon can be justified by considering the DC it-
eration-type interpretation of the proposed method over the one
dimensional OVF of . The dimension of is indepen-
dent of the size of the array (thus, the size of the optimization
problem), while the size of the search space over iterations for
the DC iteration-based method (37), that is, , increases as
increases. The average (over 200 runs) CPU time for the afore-
mentioned methods is also shown in Table II. Both methods
have been implemented in Matlab using CVX software and run
on the same PC with Intel(R) Core(TM)2 CPU 2.66 GHz.

Table II confirms that the proposed method is more efficient
than the DC iteration-based one in terms of the time required for
convergence. It is worth noting also that although the number of
variables in the matrix of the optimization problem (28) is
in general (since has to be a Hermitian matrix) after the
rank-one constraint is relaxed, the probability that the optimal
has rank one is very high as shown in [11], [31]–[33]. Thus,

in almost all cases, for different data sets, the actual dimension
of the problem (28) is . As a result, the average com-
plexity of solving (28) is significantly smaller than the worst-
case complexity, which is also guaranteed to be polynomial.

VI. CONCLUSION

We have considered the RAB problem for general-rank signal
model with additional positive semi-definite constraint. Such
RAB problem corresponds to a non-convex DC optimization
problem. We have studied this non-convex DC problem and de-
signed the POTDC-type algorithm for solving it. It has been
proved that the point found by the POTDC algorithm for the
RAB for general-rank signal model with positive semi-definite
constraint is a KKT optimal point. Moreover, the problem con-
sidered can be solved globally optimally under certain condi-
tions. Specifically, we have proved that if the presumed norm of
the mismatch that corresponds to the covariance matrix of the
desired source is sufficiently small, then the proposed POTDC
method finds the globally optimal solution of the corresponding
optimization problem. The resulted RAB method shows supe-
rior performance compared to the other existing methods in
terms of the output SINR and the resulted objective value. It
also has complexity that is guaranteed to be polynomial. None
of the existing methods used for DC programming problems
guarantee that the global optimum can be found in polynomial
time, even under some conditions. Thus, the fundamental de-
velopment of this work is the claim of global optimality and the
fact that this claim boils down to convexity of the OVF (25).
It implies that certain relatively simple DC programming prob-
lems, which have been believed to be NP-hard, are actually not
NP-hard under certain conditions.

APPENDIX

A. Proof of Lemma 1

The optimization problem (9) can be equivalently expressed
as

(38)

First, note that based on the Cauchy-Schwarz inequality it can be
found that . The latter implies that
under the condition that , the norm of the vector
is always less than or equal to . Depending on whether the
norm of is greater than or smaller than , two different
cases are possible. First, let us consider the case that

. Then, by choosing as it is
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guaranteed that and the matrix product be-
comes equal to . The former can be verified simply as
follows

(39)

where the last inequality is due to the assumption that
. By such , the objective value of the problem (9) be-

comes equal to its smallest non-negative value, i.e., zero.
Next we consider the case when . Then,

choosing results in the vector
to be parallel to the vector . Since

(it can be verified by following similar steps as in (39)) and, as it
was discussed earlier, the norm of the vector is always less
than or equal to , it can be concluded that is parallel
to and it has the largest possible magnitude. In what fol-
lows, we show that the optimal solution in this case is equal to
. The following train of inequalities is in order

(40)

(41)

where the first inequality is due to the triangular inequality and
the second one is due to the Cauchy-Schwarz inequality. Since

is parallel to and it has the largest possible magnitude,
the inequalities (40) and (41) are both active when , i.e.,
the equality holds, and therefore, is the optimal solution.
This completes the proof.

B. Proof of Lemma 2

First, we verify whether the optimal solution of the optimiza-
tion problem (13), or equivalently, the following problem

(42)

is achievable or not.
Let denote any arbitrary feasible point of the

problem (42). It is easy to see that if
, then is greater than

or equal to . The latter implies that if the
optimal solution is achievable, it lies inside the sphere of

. Based on this fact,
the optimization problem (42) can be recast as

(43)

The feasible set of the new constraint in (43) is bounded and
closed. Moreover, it can be easily shown that the feasible set of
the constraint is also closed. Specifically,
due to the fact that first constraint of the problem (43) is a sub-
level set of the following continuous function

, its feasible set is closed [34]. Since both of the feasible
sets of the constraints are closed and one of them is bounded,
the feasible set of the problem (43), which is the intersection of
these two sets, is also closed and bounded. The latter implies that
the feasible set of the problem (43) is compact. Therefore, also
based on the fact that the objective function of (43) is continues,
the optimal solution of (43), or equivalently (13), is achievable.
Let denote the optimal solution of the problem

(13) and let us define the following auxiliary optimization
problem

(44)

It can be seen that if is a feasible point of (44), then the pair
is also a feasible point of (13), which implies that the

optimal value of (44) is greater than or equal to that of (13).
However, since is a feasible point of (44) and the value
of the objective function at this feasible point is equal to the
optimal value of (13), i.e., it is equivalent to ,
it can be concluded that both of the optimization problems (13)
and (44) have the same optimal value.
Let us define another auxiliary optimization problem based

on (44) as

(45)

which is obtained from (44) by dropping the last constraint
of (44). The feasible set of (44) is a subset of the feasible
set of (45). Thus, the optimal value of (45) is smaller than
or equal to the optimal value of (44), and thus also, the op-
timal value of (13). Using the maximin theorem [24], it is
easy to verify that .
Since is smaller than or equal to the optimal value of
(13), it is upper-bounded by , where
is an arbitrary feasible point of (13). The latter implies that

. This
completes the proof.

C. Proof of Lemma 3

First, we prove that is a convex function with re-
spect to . For this goal, let and denote the op-
timal solutions of the optimization problems of and

, respectively, i.e.,

and , where and are any

two arbitrary points in the interval . It is trivial to verify
that is a feasible point of the corresponding
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optimization problem of (see the defi-
nition (29)). Therefore,

(46)

which proves that is a convex function with respect to
.
In order to show that is greater than or equal to
, it suffices to show that the feasible set of the optimiza-

tion problem of is a subset of the feasible set of the
optimization problem of . Let denote a feasible point
of the optimization problem of , it is easy to verify that

is also a feasible point of the optimization problem of
if the inequality holds. This
inequality can be rearranged as

(47)

and it is valid for any arbitrary . Therefore, is also a fea-
sible point of the optimization problem of which implies
that .
In order to show that the right and left derivatives are equal,

we use the result of [35] which gives expressions for the direc-
tional derivatives of a parametric SDP. Specifically, the direc-
tional derivatives for the following OVF

(48)

are derived in [35], where and are a scalar and
an matrix, respectively, is the real valued vector
of optimization variables, and is the real valued vector
of optimization parameters. Let be an arbitrary fixed point.
If the optimization problem of poses certain properties,
then according to [35, Theorem 10] it is directionally differ-
entiable at . These properties are (i) the functions
and are continuously differentiable, (ii) the optimiza-
tion problem of is convex, (iii) the set of optimal solu-
tions of the optimization problem of denoted as is
nonempty and bounded, (iv) the Slater condition for the op-
timization problem of holds true, and (v) the inf-com-
pactness condition is satisfied. Here inf-compactness condition
refers to the condition of the existence of and a
compact set such that

for all in a neighborhood of where denotes
the -dimensional Euclidean space. If for all the optimiza-
tion problem of is convex and the set of optimal solutions
of is non-empty and bounded, then the inf-compactness
conditions holds automatically.
The directional derivative of at in a direction
is given by

(49)

where is the set of optimal solutions that corresponds to
the dual problem of the optimization problem of , and

denotes the Lagrangian defined as

(50)

where denotes the Lagrange multiplier matrix.
Let us look again to the definitions of the OVFs and

(25) and (29), respectively, and define the following
block diagonal matrix

(51)

as well as another block diagonal matrix denoted as
which has exactly same structure as the ma-

trix with only difference that the element
in is replaced by

in .
Then the OVFs and can be equivalently recast as

(52)

and

(53)

It is straightforward to see that the functions
, , and are

continuously differentiable. Furthermore, it is easy to verify
that both optimization problems of and can
be expressed as

(54)

The problem (54) is convex and its solution set is non-empty and
bounded. Indeed, let and denote two optimal solutions
of the problem above. The Euclidean distance between and

can be expressed as

(55)

where the last line is due to the fact that the matrix product
is positive semi-definite and, therefore,

, and also the fact that for any arbitrary positive semi-definite
matrix . From (55), it can be seen that the
distance between any two arbitrary optimal solutions of (54) is
finite and, therefore, the solution set is bounded. Moreover, it is
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easy to verify that the dual problem for the optimization problem
(54) can be expressed as

(56)

where and are the Lagrange multipliers. The optimiza-
tion problem (54) is a convex SDP problem which satisfies the
Slater’s conditions as the point is a strictly
feasible point for its dual problem (56). Thus, the optimization
problem (54) satisfies the strong duality. It can also be shown
that the inf-compactness condition is satisfied by verifying that
the optimization problems of and are convex and
their corresponding solution sets are bounded for any . There-
fore, both of the OVFs and are directionally dif-
ferentiable at .
Using the result of [35, Theorem 10], the directional deriva-

tives of and can be respectively computed as

(57)
and

(58)
where and denote the optimal solution sets of the opti-
mization problem (54) and its dual problem, respectively. Using
the definitions of and , it can be seen
that the terms and are equal
at and, therefore, the directional derivatives are equiva-
lent. The latter implies that the left and right derivatives of
and are equal at .

D. Proof of Lemma 4

i) The optimization problem in Algorithm 1 at itera-
tion is obtained by linearizing around

. Since and are feasible
for the optimization problem at iteration , it can be
straightforwardly concluded that the optimal value
of the objective at iteration is less than or equal
to the optimal value at the previous iteration, i.e.,

.
ii) Since the sequence of the optimal values, i.e.,

is non-increasing and
bounded from below (every optimal value is non-nega-
tive), the sequence of the optimal values converges.

iii) The proof follows straightforwardly from [36, Proposi-
tion 3.2]. Moreover, every feasible point of the problem
(27) is a regular point. Specifically, if and denote
a feasible point of the problem (27), the gradients of the
equality and inequality constraints of this problem at
and can be expressed, respectively, as

(59)

(60)

(61)

(62)

where denotes the vectorization operator,
and denote, respectively, the real and imaginary
parts of a complex number. Note that only one of the con-
straints or can be active. The gradients ,
, and (or ) are linearly independent unless is

proportional to the identity matrix , i.e., where
is some coefficient. Therefore, assuming first that is
not proportional to the identity matrix, the linear inde-
pendence constraint qualification (LICQ) holds at every
feasible point. In the case when is proportional to the
identity matrix, the problem (12) can be expressed as

(63)

Then, the optimal solution of the problem (63) can be triv-
ially obtained as pro-
vided that . For the case when , the problem
(63) is not feasible.

Since every point obtained in any iteration of Algorithm 1
is a feasible point of the problem (27), the sequence generated
by Algorithm 1 is a sequence of all regular points. Thus, this
sequence of regular points converges to a regular point and such
point satisfies the KKT optimality conditions.

E. Proof of Theorem 1

The OVF is continuously differentiable under the con-
dition that the optimal solution of its corresponding optimiza-
tion problem is unique [37]. Although the following proof is es-
tablished based on the continuous differentiability assumption
of the OVF , it can be generalized to the case when the
OVF is not continuously differentiable.
Let , denote the optimal maximizer of the

concave OVF . Note that since the OVF is assumed
to be strictly concave, its global maximizer, i.e., , is unique.
Moreover, the strict concavity of the OVF together the
fact that for any imply that
for . If , then it is obvious that the function

is strictly decreasing over the interval
for any arbitrary and, therefore, the POTDC method
finds the globally optimal solution, i.e., . Next, we assume
that which implies that
due to the strict concavity of . The optimal solution of the
problem (36) denoted as is less than or equal to . In order
to show it, let us assume that . Using the fact that
is the optimal solution of (36), it can be trivially concluded that

(64)
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Since it was assumed that , the inequality (64) can
be rewritten as

(65)

From (65), it can be concluded that as-
suming . The latter contradicts the fact that is
the global maximizer of the OVF and, thus, .
Using the fact that , the problem (36) can be further

rewritten as

(66)

Let us now assume that while the following arguments
can be straightforwardly resulted also when . It is ob-
vious that the function is strictly decreasing over
the interval and, therefore, the POTDCmethod will not
be stuck over this interval for any arbitrary .
Since is the global maximizer of the OVF
, we equivalently say that . In what follows,

we show that there exists such that for any the func-
tion is strictly quasi-concave over the interval

. For this goal, we define the following new function

(67)

Note that since is continuously differentiable, is
continuous and, therefore, is a continuous function. Based
on the definition of and due to the strict concavity of ,
it can be concluded that the multiplicative term
in the definition of is a strictly decreasing function on the
interval which approaches zero as approaches .
Moreover, the term is equal to zero at the point

. The latter implies that the function is non-zero
over the interval , while at the point .
Using the properties that the term is strictly

decreasing over the interval and the OVF
is strictly concave together with the fact that the the term

approaches zero when , it is straight-
forward to show that there exists , such
that the function is strictly decreasing over the interval

. Moreover, using the strictly decreasing property of
the term over the interval , it can
be easily concluded that for any

. Since the lower-bound of over the interval
, i.e., , is less than and also

is a continuous function, there exists such that
. The latter implies that

(68)

Based on the fact that is strictly decreasing over the interval
and, therefore, over the interval and also based

on (68), it can be concluded that for any ,

if , while if . In
other words,

(69)

and

(70)

which implies that by selecting equal to where
, or equivalently, if , then the func-

tion is strictly quasi-concave, and therefore, the
POTDC method finds the globally optimal solution. This com-
pletes the proof.
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