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Abstract

Statistical inference subject to nonnegativity constraints is a frequently occurring problem in signal processing.

The nonnegative least-mean-square (NNLMS) algorithm was derived to address such problems in an online way.

This algorithm builds on a fixed-point iteration strategy driven by the Karush-Kuhn-Tucker conditions. It was shown

to provide low variance estimates, but it however suffers from unbalanced convergence rates of these estimates. In

this paper, we address this problem by introducing a variant of the NNLMS algorithm. We provide a theoretical

analysis of its behavior in terms of transient learning curve, steady-state and tracking performance. Simulations are

conducted to validate the theoretical results. We also introduce a potential application of this algorithm to sparse

system identification.
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I. INTRODUCTION

Adaptive filtering is a powerful framework for addressing system identification problems. Algorithms such as the

Least-Mean-Square (LMS) and the Recursive Least-Square (RLS) algorithms aim at minimizing the mean square-

error cost function in an online manner based on input/output measurement sequences [1], [2]. In practice, rather

than leaving the parameters to be estimated totally free and relying on data, it is often desirable to introduce some

constraints on the parameter space. These constraints are usually introduced to impose some specific structures, or

to incorporate prior knowledge, so as to improve the estimation accuracy and the interpretability of results [3], [4].

The nonnegativity constraint is one of the most frequently used constraints among several popular ones [5]. It can be

imposed to avoid physically unreasonable solutions and to comply with physical characteristics. For example, quan-

tities such as intensities [6], [7], chemical concentrations [8], and material fractions of abundance [9] must naturally

fulfill nonnegativity constraints. Nonnegativity constraints may also enhance the physical interpretability of some

analyzed results. For instance, Nonnegative Matrix Factorization leads to more meaningful image decompositions

than Principle Component Analysis (PCA) [10]. PCA can also be conducted subject to nonnegativity constraints

in order to enhance result interpretability [11]. Finally, there are important problems in signal processing that can

be cast as optimization problems under nonnegativity constraints [12]. Other applications related to nonnegativity

constraints can be found in [5], [13]–[16].

Non-negativity constrained problems can be solved in a batch mode via active set methods [17], [18], gradient

projection methods [19], [20], and multiplicative methods [21], to cite a few. Online system identification methods

subject to nonnegativity constraints can also be of great interest in applications that require to adaptively identify

a dynamic system. An LMS-type algorithm, called the non-negative least-mean-square (NNLMS) algorithm, was

proposed in [22] to address the least-mean-square problem under nonnegativity constraints. It was derived based

on a stochastic gradient descent approach combined with a fixed-point iteration strategy that ensures convergence

toward a solution satisfying the Karush-Kuhn-Tucker (KKT) conditions. In [23], several variants of the NNLMS

were derived to improve its convergence behavior in some sense. The steady-state performance of these algorithms

was analyzed in [24]. It was observed that a drawback of the NNLMS algorithm is that the filter coefficients

suffer from unbalanced convergence rates. In particular, convergence of small coefficients in the active set, that is,

those tending to zero at steady-state, progressively slows down with time and almost stalls when approaching the

steady-state. To alleviate this drawback, a variant of the NNLMS algorithm was proposed in [23] which applies a

Gamma correction term to each component of the gradient in the update relation. This operation is however time

consuming, which may preclude its use in real-time applications requiring filters with a large number of coefficients.

In addition, this reweighting operation may be insufficient to address the convergence issue in the case of a large

spread in coefficient values.
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In this paper, we propose a variant of the NNLMS algorithm that balances more efficiently the convergence rate

of the different filter coefficients. The entries of the gradient correction term are reweighted by a differentiable

sign-like function at each time instant. This gives the filter coefficients balanced convergence rates and largely

reduces the sensitivity of the algorithm to coefficient range. Transient and steady-state excess mean-square error are

also analyzed. Simulations are conducted to illustrate the performance of the proposed algorithm and to validate

the theoretical findings. The rest of this paper is organized as follows. Section II reviews the problem of system

identification under non-negativity constraints and briefly introduces the NNLMS algorithm. Section III motivates

and introduces a new variant of the NNLMS algorithm. In Section IV, the behavior in the mean and mean-square-

error sense, and the tracking performance of this algorithm, are studied. Section V provides simulation results to

illustrate the properties of the algorithm and the consistency with respect to theoretical results. Section VI concludes

the paper.

In this paper normal font letters (x) denote scalars, boldface small letters (x) denote vectors, boldface capital

letters (X) denote matrices with I being the identity matrix. All vectors are column vectors. The superscript (·)>

represents the transpose of a matrix or a vector, trace{·} denotes trace of a matrix, and E{·} denotes statistical

expectation. Either Dx or D{x1, . . . , xN} denote a diagonal matrix whose main diagonal is the vector x =

[x1, . . . , xN ]
>. The operator diag{·} forms a column vector with the main diagonal entries of its matrix argument.

II. ONLINE SYSTEM IDENTIFICATION SUBJECT TO NONNEGATIVITY CONSTRAINTS

Consider an unknown system with input-output relation characterized by the linear model:

y(n) = α?>x(n) + z(n) (1)

with α? = [α?1, α
?
2, . . . , α

?
N ]
> an unknown parameter vector, and x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]>

the vector of regressors with positive definite correlation matrix Rx > 0. The input signal x(n) and the desired

output signal y(n) are assumed zero-mean stationary. The modeling error z(n) is assumed zero-mean stationary,

independent and identically distributed with variance σ2z . We seek to identify this system by minimizing the following

constrained mean-square error criterion:

αo = argmin
α
J(α)

subject to αi ≥ 0, ∀i
(2)

where the nonnegativity of the estimated coefficients is imposed by inherent physical characteristics of the system,

and J(α) is the mean-square error criterion

J(α) = E{[y(n)−α>x(n)]2} (3)
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and αo is the solution of the constrained optimization problem (2). The Lagrange function associated with this

problem is given by L(α, λ) = J(α) − λ>α, with λ the vector of nonnegative Lagrange multipliers. The KKT

conditions for (2) at the optimum αo can be combined into the following expression [22], [25]

αoi [−∇αJ(αo)]i = 0 (4)

where ∇α stands for the gradient operator with respect to α. Implementing a fixed-point strategy with (4) leads to

the component-wise gradient descent algorithm [22]

αi(n+ 1) = αi(n) + η(n) fi(α(n))αi(n)[−∇αJ(α(n))]i (5)

where η(n) is the positive step size that controls the convergence rate and fi(α(n)) > 0. This iteration is similar

in some sense to the expectation maximization (EM) algorithm [26]. Using fi(α(n)) = 1, stochastic gradient

approximations as for the LMS algorithm, and rewriting the update equation in vectorial form, we obtain the

NNLMS algorithm [22]:

α(n+ 1) = α(n) + η(n)Dα(n)x(n) e(n) (6)

where Dα(n) = diag{α(n)} and e(n) is the estimation error at time instant n:

e(n) = y(n)−α>(n)x(n). (7)

The algorithm requires to be initialized with positive values. Suppose that α(n) is nonnegative at time n. If the

step size satisfies

0 < η(n) ≤ min
i

1

−e(n)xi(n)
, (8)

for all i ∈ {j : e(n)xj(n) < 0}, the nonnegativity constraint is satisfied at time n+ 1 with (6). If e(n)xi(n) ≥ 0,

there is no restriction on the step size to guarantee the nonnegativity constraint. Further, if we allow instantaneous

negative estimates because η(n) does not obey the above condition, the algorithm can still converge to the constrained

optimum αo provided that the step size is sufficiently small. Convergence of the NNLMS algorithm was analyzed

in [22]. Its steady-state excess mean-square error (EMSE) was studied in [24].

III. MOTIVATING FACTS AND THE ALGORITHM

Compared with the LMS algorithm, it can be observed that the NNLMS in (6) can be thought of as a scaled

stochastic gradient descent algorithm with the gap between each entry αi(n) and the nonnegativity bound 0 used as a

scaling factor, that is, each component of the gradient vector is scaled by αi(n). The update vector Dα(n)x(n)e(n)

is thus no longer in the direction of the gradient. On the one hand, this enables the corrections αi(n)xi(n)e(n)

to reduce gradually to zero for coefficients αi(n) tending to zero, which leads to low-variance estimates for these

coefficients. On the other hand, if a coefficient αi(n) that approaches zero turns negative due to the stochastic
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update, the negative sign of this coefficient turns the update αi(n)xi(n)e(n) from the gradient descent strategy to

a gradient ascent one, and coefficient αi(n) moves again towards zero. Moreover, unlike LMS, the correction term

Dα(n)x(n)e(n) in the NNLMS algorithm is a nonlinear function of α(n). This causes the two algorithms to have

different convergence behaviors.

In the case of NNLMS, the presence of the factor αi(n) in the update αi(n)xi(n)e(n) of the i-th coefficient

leads to different convergence rates for coefficients of different values. This is particularly problematic for the

coefficients in the active set, as they become progressively smaller through iterations and finally tend to zero.

Hence, their convergence eventually stalls due to insignificant correction along their axes. Though the algorithm

leads to a very low steady-state error for these coefficients, this happens only after a long convergence process.

In addition, the dispersion of coefficient update ranges introduces difficulties for step size selection and coefficient

initialization, since the estimated coefficients act as different directional contributions to the step size. In order to

address these problems, it is of interest to derive a variant of the NNLMS algorithm that satisfies the following

requirements:

• The coefficients should converge to the fixed point satisfying (4), so that it still solves the nonnegativity

constrained problem (2);

• The algorithm should lead to more balanced convergence rates and steady-state weight errors than the original

algorithm (6), but without introducing significant computational burden;

• The sensitivity of the algorithm (6) to the spread of the coefficient updates should be reduced.

The Exponential NNLMS [23] replaces the gradient scaling αi(n) with αγi (n) = sgn(αi(n))|αi(n)|γ , where γ =

γ1/γ2 with γ1 and γ2 being two odd numbers such that γ2 > γ1 > 0. This variant mitigates the aforementioned

drawbacks of NNLMS to some extent, but introduces additional computational burden. In addition, the stability of

the algorithm is still affected by the weight dynamics since αγi (n) is unbounded.

To reduce the slow-down effect caused by the factor αi(n) in the update term of (6) while keeping zero as a

fixed-point to attract the entries αi(n) in the active set, we propose the following expression for fi(α(n)) in (4):

fi(α(n)) = fi(n) =
1

|αi(n)|+ ε
(9)

with ε a small positive parameter so that fi(n) > 0 as needed. Defining the diagonal matrix Df (n) with i-th

diagonal entries given by fi(n), and using this matrix to reweight the gradient correction term at each iteration,

leads to the following algorithm:

α(n+ 1) = α(n) + ηDf (n)Dα(n)x(n) e(n)

= α(n) + ηDw(n)x(n) e(n)

(10)

where

Dw(n) =Df (n)Dα(n) (11)
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Fig. 1. Gradient scaling function of NNLMS, IP-NNLMS (ε = 0.1 and 0.01), and Exponential NNLMS with γ = 3
7 [23]. Note

that w(x) is unbounded for NNLMS and Exponential NNLMS.

is the diagonal matrix with i-th element

wi(n) = fi(n)αi(n) =
αi(n)

|αi(n)|+ ε
. (12)

In expression (10), as each entry of the NNLMS correction term is reweighted by a scalar value that is inversely

proportional to |αi(n)| + ε, we name this algorithm Inversely-Proportionate NNLMS (IP-NNLMS) by analogy

with the terminology Proportionate LMS [27]. The weight wi(n) corresponds to the application of a function

ϕIPNNLMS(x) = x/(|x| + ε) at x = αi(n). The function ϕIPNNLMS(x) is plotted in Fig. 1 for ε = 0.1 and ε = 0.01.

Observe that ϕIPNNLMS(x) is a smooth approximation of the sign function. The correction terms wi(n) in (12) are

bounded, and adjustments in the positive orthant are close to 1 (except around the origin), which does not impose

scaling effect on the gradient entries. Correction terms also converge to 0 for filter coefficients αi(n) that gradually

tend to 0, so as to ensure convergence for these coefficients in the active set. Furthermore, as the gradient correction

terms are in ]− 1, 1[, the sensitivity of the algorithm to the dynamic range of the filter coefficients is reduced. The

corresponding gradient correction terms for the NNLMS and Exponential NNLMS algorithms are determined by

the application of functions ϕNNLMS(x) = x and ϕENNLMS(x) = |x|xγ . These functions are also depicted in Fig. 1

(for γ = 3/7) for comparison.

IV. STOCHASTIC BEHAVIOR STUDY

Direct analysis of the IP-NNLMS update relation for deriving stochastic behavior models is made difficult by

the nonlinearity of the correction term. Even for the Proportionate LMS algorithm, the analysis was conducted by
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considering a fixed reweighting matrix [27]. In this section, we shall provide analytical models for the IP-NNLMS

algorithm involving several reasonable approximations. Simulations will validate the proposed models.

A. Mean weight behavior analysis

Define the weight error vector v(n) as the difference between the estimated weight α(n) and the unconstrained

optimum α?, that is,

v(n) = α(n)−α?. (13)

Subtraction α? from both sides of the weight update relation (10) yields

v(n+ 1) = v(n) + ηDw(n)x(n) e(n) (14)

The estimation error e(n) can also be expressed in terms of v(n) as follows

e(n) = y(n)−α>(n)x(n)

= z(n)− v>(n)x(n).
(15)

Using (14) and (15), the weight error update relation can then be expressed as

v(n+ 1) = v(n)− ηDw(n)x(n)x
>(n)v(n) + ηDw(n)x(n) z(n) (16)

To conduct the analysis, the modified independence assumption (MIA) will be used throughout this section.

It assumes that the weight error vector v(n) is statistically independent of x(n)x>(n). This assumption is less

restrictive than the conventional independence assumption as discussed in detail in [28].

Taking the expected value on both sides of (16), we note that the last term on its RHS is equal to zero as the

noise z(n) is assumed zero-mean and independent of any other signal. It was found in [23] that the first order

behavior of NNLMS type algorithms is not highly sensitive to approximations applied to the mean weight recursion

relation. Based on the zeroth-order approximation of the gradient scaling factor about E{α(n)}, we write

wi(n) =
αi(n)

|αi(n)|+ ε
≈ E{αi(n)}
|E{αi(n)}|+ ε

, for i = 1, . . . , N. (17)

As a consequence, we have

E{v(n+ 1)} = E{v(n)} − ηD
{

E{α1(n)}
|E{α1(n)}|+ ε

, . . . ,
E{αN (n)}

|E{αN (n)}|+ ε

}
E{x(n)x>(n)v(n)}. (18)

Using the MIA, the mean weight error behavior can finally be described by

E{v(n+ 1)} = E{v(n)} − ηD
{

E{v1(n) + α?1}
|E{v1(n) + α?1}|+ ε

, . . . ,
E{vN (n) + α?N}

|E{vN (n) + α?N}|+ ε

}
RxE{v(n)}. (19)

Monte Carlo simulations reported in Section V, and depicted in Fig. 2, illustrate the consistency of this model.

Model (19) is nonlinear with respect to v(n), which makes derivation of a condition for stability difficult.

Interested readers are referred to [22] for a related analysis, that of the NNLMS algorithm, based on a fixed-point

equation analysis.
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B. Transient excess mean-square error model

The objective of this section is to derive a model for the transient mean-square error (MSE) behavior of the

algorithm. Using e(n) = z(n) − v>(n)x(n), neglecting the statistical dependence of x(n)x>(n) and v(n), and

using the properties for z(n), yields the mean-square estimation error (MSE):

E{e2(n)} = E{(z(n)− v>(n)x(n))(z(n)− v>(n)x(n))}

= σ2z + trace{RxK(n)}. (20)

The second term in the RHS of (20) incorporates the excess mean-square error (EMSE), which is due to the vector

α(n)−αo, and part of the minimum MSE as the latter is composed by noise power σ2z and by the power contributed

by the vector difference α?−αo, which affects v(n). As the analytical determination of αo is not possible except

for the case of white input signals, we derive a model for the behavior of ζ(n) = trace{RxK(n)}. Thus, in the

sequel we determine a recursive update equation for K(n).

Although the zeroth-order approximation (17) may be sufficient for deriving accurate mean weight behavior

models, it is insufficient to accurately characterize the second-order behavior of the algorithm. To proceed with

the analysis, we approximate the nonlinear reweighting term (12) by its first-order Taylor approximation about

E{αi(n)}

wi(n) ≈
E{αi(n)}

|E{αi(n)}|+ ε
+∇w(E{αi(n)}) (αi(n)− E{αi(n)})

= ri(n) + si(n)vi(n)

(21)

where

ri(n) =
E{vi(n)}+ α?i

|E{vi(n)}+ α?i |+ ε
−∇w(E{vi(n)}+ α?i )E{vi(n)} (22)

si(n) = ∇w(E{vi(n)}+ α?i ). (23)

Defining the diagonal matrix Ds(n) =D{s1(n), . . . , sN (n)}, (21) can be written in vector form as

w(n) ≈ r(n) +Ds(n)v(n). (24)

Post-multiplying (14) by its transpose, using (24), taking the expected value, and using the same steps as (64)–(72)

in [23] and the assumptions therein, we have

K(n+ 1) =K(n)− η
(
P 1(n)K(n) +K(n)P>1 (n)

)
− η

(
P 5(n)K(n) +K(n)P>5 (n)

)
+ η2

(
P 6(n) + P 7(n) + P

>
7 (n) + P 8(n)

)
+ η2σ2z

(
P 2(n) + P 3(n) + P

>
3 (n) + P 4(n)

) (25)
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with

P 1(n) = E
{
Dx(n) r(n)x

>(n)
}
=Dr(n)Rx (26)

P 2(n) = E{Dx(n) r(n) r
>(n)Dx(n)} ≈Dr(n)RxDr(n) (27)

P 3(n) = E{Dx(n) r(n)v
>(n)Ds(n)Dx(n)}

≈Dr(n)RxE{Dv(n)}Ds(n)

(28)

P 4(n) = E{Dx(n)Ds(n)v(n)v
>(n)Ds(n)Dx(n)}

≈Ds(n)
(
Rx ◦K(n)

)
Ds(n)

(29)

P 5(n) =
{
v>(n)x(n)Dx(n)Ds(n)

}
= diag

{
RxE{v(n)}

}
Ds(n)

(30)

P 6(n) = E{v>(n)x(n)Dx(n) r(n) r
>(n)Dx(n)x

>(n)v(n)}

≈Dr(n)Z(n)Dr(n)

(31)

P 7(n) = E{v>(n)x(n)Dx(n) r(n)v
>(n)Ds(n)Dx(n)x

>(n)v(n)}

≈Dr(n)Z(n)E{Dv(n)}Ds(n)

(32)

P 8(n) = E{v>(n)x(n)Dx(n)Ds(n)v(n)v
>(n)Ds(n)Dx(n)x

>(n)v(n)}

≈Ds(n)
(
Z(n) ◦K(n)

)
Ds(n)

(33)

where Dr(n) =D{r1(n), . . . , rN (n)}, the symbol ◦ in (30) denotes the Hadamard product, and Z(n) in (31)–(33)

is given by

Z(n) = 2RxK(n)Rx + trace{RxK(n)}Rx. (34)

Using (26)–(33) with (25) leads to a recursive model for the transient behavior of K(n). Monte Carlo simulations

reported in Section V, and depicted in Fig. 3, illustrate the consistency of this model.

C. Steady-state performance and tracking properties

In order to characterize the steady-state performance and the tracking properties of the algorithm, we consider

in this section the following time-variant unknown parameter vector [2], [29]

α?(n) = α? + θ(n) (35)

with

θ(n) = ρθ(n− 1) + q(n) (36)

where −1 < ρ < 1 and q(n) is a zero-mean i.i.d. sequence with covariance matrix Rq = σ2qI . At steady-state, the

covariance matrix of θ(n) is then given by

Rθ =
1

1− ρ2 Rq. (37)
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With the unknown parameter vector (35), the weight error vector v(n) is given by

v(n) = α(n)−α?(n). (38)

Assuming convergence of α(n) to α(∞), the weight error vector (38) can then be expressed as

v(n) = [α(n)− E {α(∞)}] + [E {α(∞)} −α?(n)]

= [α(n)− E {α(∞)} − θ(n)] + [E {α(∞)} −α?]. (39)

We define

v′(n) = α(n)− E {α(∞)} − θ(n) (40)

and note that the second term on the RHS of (39) is equal to E{v(∞)} since E{θ(n)} = 0. Then, the estimation

error at instant n can be written as

e(n) = z(n)− v′>(n)x(n)− E{v>(∞)}x(n). (41)

Hence, ζ(n) = E{e2(n)} − σ2z can be expressed as

ζ(n)= E
{
[x>(n)v′(n)]2

}︸ ︷︷ ︸
ζ′(n)

+ trace
{
RxE {v(∞)}E{v>(∞)}

}︸ ︷︷ ︸
ζ∞

+2E
{
v′>(n)

}
RxE{v(∞)}. (42)

To determine limn→∞ ζ(n) we note that the second term ζ∞ on the RHS of (42) is deterministic. Also, the third

term vanishes since limn→∞E {v′(∞)} = 0. Then, we need to evaluate limn→∞ ζ
′(n). Subtracting (40) at n+ 1

from the same expression at n and using (10) and (36) we have

v′(n+ 1) = v′(n) + ηDw(n)x(n) e(n) + (1− ρ)θ(n)− q(n+ 1). (43)

For the analysis that follows, we group the weights wi(n) into two distinct sets. The set S+ contains the indices

of the weights that converge in the mean to positive values, namely,

S+ = {i : E{wi(∞)} > 0}. (44)

The set S0 contains the indices of the weights that converge in the mean to zero, namely,

S0 = {i : E{wi(∞)} = 0}. (45)

Considering that the nonnegativity constraint is always satisfied at steady-state, if E{wi(∞)} = 0 for all i ∈ S0,

then αi(∞) = 0 for all i ∈ S0 and for any realization. This implies from (40) that:

v′i(∞) = −θi(∞), for all i ∈ S0. (46)

Now let D−1w (n) be the diagonal matrix with entries

[D
−1
w (n)]ii =


1

wi(n)
, i ∈ S+

0, i ∈ S0
(47)
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and I the diagonal matrix defined as

[ I ]ii =

 1, i ∈ S+
0, i ∈ S0.

(48)

With these matrices, we have

D
−1
w (n)Dw(n) = I. (49)

Now, evaluating the weighted square-norm ‖·‖2
D
−1

w(n)

of both sides of (43) and taking the limit as n→∞ we have

lim
n→∞

E
{
‖v′(n+ 1)‖2

D
−1

w (n)

}
= lim
n→∞

(
E
{
‖v′(n)‖2

D
−1

w (n)

}
+ 2 η E

{
v′>(n) I x(n) e(n)

}
+ η2E

{
x>(n) I Dw(n)x(n) e

2(n)
}

+ (1− ρ)2E
{
‖θ(n)‖2

D
−1

w (n)

}
+ E

{
‖q(n+ 1)‖2

D
−1

w (n)

}
+ 2 (1− ρ)E{v′>(n)D−1w (n)θ(n)}+ 2 η (1− ρ)E{e(n)x>(n) I θ(n)}

)
.

(50)

Assuming convergence, the following relation is valid at steady-state:

lim
n→∞

E
{
‖v′(n+ 1)‖2

D
−1

w (n)

}
= lim

n→∞
E{‖v′(n)‖2

D
−1

w (n)
}. (51)

Before evaluating all the terms on the RHS of (50), we calculate the cross-covariance matrix E{v′(n)θ>(n)}

at steady-state, namely, Γ = limn→∞E{v′(n)θ>(n)}. Post-multiplying both sides of (43) by θ>(n + 1), taking

expected value and the limit, we have

Γ = lim
n→∞

E
{[
v′(n) + ηDw(n)x(n)e(n)

]
θ>(n+ 1)}+

[
(1− ρ)θ(n)− q(n+ 1)

]
θ>(n+ 1)

}
=
[
ρΓ− η ρE{Dw(∞)}Rx Γ

]
+
[
ρ (1− ρ)Rθ −Rq

]
,

(52)

which yields

Γ =

(
1

1 + ρ

)[
ρ (I − η E{Dw(∞)}Rx)− I

]−1
Rq. (53)

Using (41) and the MIA, the second term on the RHS of (50) for n→∞ can be expressed as

lim
n→∞

E
{
v′>(n)I x(n) e(n)

}
= − lim

n→∞
E
{
v′>(n) I x(n)x>(n)v′(n) + v′>(n) I x(n)x>(n)E{v(∞)}

}
= −ζ ′(∞) + lim

n→∞
E{v′>(n) (I − I)x(n)x>(n)v′(n)}

= −ζ ′(∞)− trace{Rx Γ (I − I)}

(54)

where we used v′i(∞) = −θi(∞) for i ∈ S0 (see (46)), and E {v′(∞)} = 0. Consider now the third term on the

RHS of (50). As this term is of second order in η and we are interested on its value at steady-state, we approximate

its evaluation by disregarding the correlation between e2(n) and x>(n) I Dw(n)x(n) for n→∞. This leads to

lim
n→∞

E{x>(n)IDw(n)x(n)e
2(n)

}
≈ trace{E{Dw(∞)}Rx} (σ2z + ζ ′(∞) + ζ∞). (55)
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The fourth and the fifth terms in the RHS of (50) can be directly expressed as

lim
n→∞

E
{
‖θ(n)‖2

D
−1

w (n)

}
= trace{E{D−1w (∞)}Rθ} (56)

lim
n→∞

E
{
‖q(n+ 1)‖2

D
−1

w (n)

}
= trace{E{D−1w (∞)}Rq} (57)

The sixth term on the RHS of (50) can be written as

lim
n→∞

E{v′>(n)D−1w (n)θ(n)} = trace{E{D−1w (∞)}Γ}, (58)

and, finally, the last term is given by

lim
n→∞

E{e(n)x>(n) Iθ(n)} = lim
n→∞

−E{v>(n)x(n)x>(n)Iθ(n)}

= −trace{IΓRx}
(59)

Replacing (51)–(59) into (50) and solving the equation with respect to ζ ′(∞), we have

ζ ′(∞) =
η trace{E{Dw(∞)}Rx}(σ2z + ζ∞) + β + η−1 γ

2− η trace{E{Dw(∞)}Rx}
(60)

where

β = trace{RxΓ(I − I)} (61)

γ = trace{2E{D−1w (∞)}[Rq + (1− ρ)Γ]} − 2 η(1− ρ) trace{IΓRx}. (62)

with Γ given by (52). Finally, using (42), we obtain the steady-state result:

ζ(∞) =
η trace{E{Dw(∞)}Rx}(σ2z + ζ∞) + β + η−1 γ

2− η trace{E{Dw(∞)}Rx}
+ ζ∞. (63)

To obtain the steady-state performance in a stationary environment, it is sufficient to set ρ and Rq to zero in (63).

V. SIMULATION RESULTS

This section present simulation results to validate the derived theoretical models. The simulation curves were

obtained by averaging over 100 Monte Carlo runs.

A. Model validation in a stationary environment

Consider the application of NNLMS-type algorithms for the online identification of the 30-coefficient sparse

impulse response

α?i =


1− 0.05 i i = 1, . . . , 20

0 i = 21, . . . , 25

−0.01 (i− 25) i = 26, . . . , 30.

(64)



13

where the last five negative coefficients were included in order to activate the nonnegativity constraints. The input

signal x(n) was generated with the first-order AR model

x(n) = τ x(n− 1) + ξ(n), (65)

where ξ(n) was an i.i.d. zero-mean Gaussian sequence with variance σ2ξ =
√
1− τ2 so that σ2x = 1, and independent

of any other signal. We considered the two settings τ = 0 and τ = 0.5. The former corresponds to an uncorrelated

input, while the latter results in a correlated input. The additive noise z(n) was zero-mean i.i.d. Gaussian with

variance σ2z = 0.01. The filter coefficients were initialized with αi(0) = 0.5 for all i = 1, . . . , N , with N = 30.

Besides verifying the IP-NNLMS model accuracy, we also compare the performance of IP-NNLMS with the

original NNLMS and the Exponential NNLMS algorithms. Their step sizes were set to ηNNLMS = 0.002, ηENNLMS =

0.0018, and ηIPNNLMS = 0.001, respectively, so that they approximatively reach the same steady-state performance.

The exponential parameter γ of the Exponential NNLMS algorithm was set to γ = 3
7 . The parameter ε in the

IP-NNLMS algorithm was set to 0.01.

The mean weight behaviors of these algorithms are shown in Fig. 2. The theoretical curves for the IP-NNLMS

algorithm were obtained with model (19). Those of the other two algorithms were obtained with the models

derived in [22], [23]. All the theoretical curves match well those obtained with Monte Carlo simulations. As

already mentioned, the original NNLMS algorithm is characterized by low convergence rates for small coefficients.

Several coefficients in the active set did not converged to zero even after a long time. Compared to the NNLMS

algorithm, the Exponential NNLMS and the IP-NNLMS algorithms have more balanced convergence rates for all

coefficients. The Exponential NNLMS however has a higher computational complexity than the IP-NNLMS. Fig. 3

provides the behavior of ζ(n) for the three algorithms. For the sake of clarity, only the theoretical learning curves

are represented for the NNLMS and Exponential NNLMS algorithms. They were obtained from [22], [23]. The

transient learning curves of the IP-NNLMS algorithm were obtained using (25). The steady-state performance was

estimated by (63). All these results show that the proposed algorithm has a performance that is at least comparable

to those of the other algorithms, and that the theoretical model accurately predict its performance.

B. Tracking performance in a non-stationary environment

Consider the time-varying system with coefficients defined by the time-variant relation (35). The mean values of

the coefficients were set as in (64). The parameter ρ of the random perturbation in (35) was set to ρ = 0.5. The

random vector q(n) had a covariance matrix Rq = σ2q I , with σ2q = 0.2 × 10−4 and σ2q = 5 × 10−4 successively.

The step size was set to η = 10−5. All the other parameters were not changed compared to the previous experiment.

The results for uncorrelated and correlated inputs are shown in Fig. 4. As expected, it can be observed that the

steady-state estimation error increases with the variance σ2q .
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(b) NNLMS (correlated input)
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(c) Exponential NNLMS (uncorrelated input)

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

αi

(d) Exponential NNLMS (correlated input)
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(e) IP-NNLMS (uncorrelated input)
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Fig. 2. Mean weight behavior of NNLMS, IP-NNLMS and Exponential NNLMS algorithms. Left column: uncorrelated input.

Right column: correlated input with τ = 0.5. Red curves were obtained with theoretical models, and blue curves were obtained

by averaging over 100 Monte Carlo simulations.

C. Application to sparse online system identification

Consider the online system identification problem consisting of minimizing the MSE criterion with `1-norm

regularization

αo = argmin
α

1

2
E{[y(n)−α>x(n)]2}+ ν ‖α‖1 (66)
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Fig. 3. Learning curves of NNLMS, IP-NNLMS and Exponential NNLMS algorithms. Left column: uncorrelated input. Right

column: correlated input with τ = 0.5.
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Fig. 4. Learning curves of NNLMS, IP-NNLMS and Exponential NNLMS algorithm for a time-varying system. Left column:

uncorrelated input. Right column: correlated input with τ = 0.5. The dash-dot lines represent the steady-state ζ(n) values

calculated with (63). Solid learning curves were obtained by averaging over 100 Monte Carlo simulations.

with the parameter ν providing a tradeoff between data fidelity and solution sparsity. This problem can be rewritten

as a standard NNLMS problem by introducing two N × 1 nonnegative vectors α+ and α− such that

α = α+ −α− with α+ ≥ 0 and α− ≥ 0. (67)



16

Let us define the vectors α̃ = col{α+,α−} and x̃(n) = col{x(n),−x(n)} where the operator col{·} stacks its

vector arguments on top of each other. The problem (66) can then be reformulated as

α̃o = argmin
α̃

1

2
E{ [y(n)− x̃>(n) α̃]2}+ ν 1> α̃

subject to α̃ ≥ 0

(68)

where 1 is an all-one vector of length 2N . Problem (68) is a quadratic problem with nonnegativity constraint with

respect to α̃. Note that, although there are an infinite number of the decompositions satisfying (67), the regularization

term 1> α̃ forces (68) to admit a unique solution. Using the proposed IP-NNLMS algorithm, problem (68) can be

solved in an online manner as follows [30]

α̃(n+ 1) = α̃(n) + ηDf (n)Dα̃(n) [x̃(n) e(n)− ν 1] (69)

withDf (n) the diagonal matrix with i-th diagonal entries fi(n) defined in the form of (9), namely, fi(n) = 1
|α̃i(n)|+ε .

The performance of the algorithm can be further improved by considering a reweighted `1-norm approach, which

leads to the algorithm

α̃(n+ 1) = α̃(n) + ηDf (n)Dα̃(n) [x̃(n) e(n)− ν γ(n)] (70)

where the i-th entry of γ(n) is given by γi(n) = 1
α̃i(n)+µ

, with µ a small positive number.

The above algorithm was tested by considering the sparse system of order N = 100 defined as follows:
α?1 = 0.8, α?3 = 0.5, α?4 = 0.4, α?5 = −0.6, α?95 = −0.3, α?96 = 0.2, α?100 = 0.1

α?i = 0, otherwise.
(71)

The input signal was generated with the autoregressive model (65) with τ = 0.5. The observation noise z(n)

was zero-mean i.i.d. Gaussian with variance σ2z = 0.1. The algorithm (70), the LMS algorithm, the Sparse LMS

algorithm [31] with reweighted `1-norm regularizer defined as

α(n+ 1) = α(n) + η

[
x(n) e(n)− νD

{
sgn(α1(n))

|α1(n)|+ µ
, . . . ,

sgn(αN (n))

|αN (n)|+ µ

}]
(72)

and the projected-gradient algorithm given by

α̃(n+ 1) = max{α̃(n) + η [x̃(n) e(n)− ν γ(n)];0} (73)

where max{· ; ·} denotes the component-wise maximum operator applied to its vector arguments, were tested for

comparison purpose. The parameters ν and µ in (70) and (72) were set to ν = 0.001 and µ = 0.01, respectively.

The parameter ε in (70) was set to ε = 0.01. The step sizes were set to η = 0.002 for all the algorithms.

Fig. 6(c) shows the EMSE learning curves of all the algorithms. The gain from promoting sparsity is clearly

shown by the performance of the Sparse LMS and the proposed algorithm. The proposed algorithm shows lower

estimation error compared with the others since it encourages small values to converge toward 0. This advantage
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can be seen in Figs. 6(a)-6(d), which depict instantaneous weight values at steady-state for a single realization. The

values of filter coefficients αi(n) with i = 40, . . . , 60 are shown in zoomed-in subfigures for a clearer presentation.

The IP-NNLMS algorithm shows a clear advantage in accurately estimating these null-valued coefficients.
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Fig. 5. EMSE learning curves.

VI. CONCLUSION

In this paper, we presented an algorithm for online system identification subject to nonnegativity constraint. This

algorithm is a variant of the NNLMS algorithm that is able to balance the convergence rate of the filter coefficients

more efficiently by reweighting the gradient entries. We analyzed this algorithm in the mean and mean-square-error

sense, and considered the case of time-varying systems in order to appreciate its tracking ability. Simulations were

conducted to illustrate the performance of the proposed algorithm and to validate the theoretical findings. Finally,

an application to sparse identification was considered.

REFERENCES

[1] S. Haykin, Adaptive filter theory, Pearson Education India, 4th edition, 2005.

[2] A. H. Sayed, Adaptive filters, John Wiley & Sons, NJ, 2008.

[3] T. A. Johansen, “Constrained and regularized system identification,” Modeling Identification and Control, vol. 79, no. 2, pp. 109–116,

1998.

[4] A. Yeredor, “On the role of constraints in system identification,” in Proc. of International Workshop on Total Least Squares and

Errors-in-Variables Modeling, Leuven, Belgium, August 2006, pp. 46–48.



18

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

index

40 45 50 55 60
−0.04

−0.02

0

0.02

(a) Coefficients of LMS

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

index

40 45 50 55 60
−4

−2

0

2
x 10

−3

(b) Coefficients of sparse LMS algorithm (72)

0 20 40 60 80 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

index

40 45 50 55 60
−10

−5

0

5
x 10

−3

(c) Coefficients of projected-gradient LMS algorithm (73)

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

index

40 45 50 55 60
−5

0

5

10
x 10

−125

(d) Coefficients of IP-NNLMS algorithm (70)

Fig. 6. Filter coefficients corresponding to a single realization.

[5] D. Chen and R. Plemmons, “Nonnegativity constraints in numerical analysis,” in Proc. of Symposium on the Birth of Numerical

Analysis, Leuven Belgium, October 2007, pp. 109–140.

[6] R. C. Puetter, T. R. Gosnell, and A. Yahil, “Digital image reconstruction: Deblurring and denoising,” Annual Review of Astronomy

and Astrophysics, vol. 43, pp. 139–194, 2005.

[7] J. M. Bardsley, J. K. Merikoski, and R. Vio, “The stabilizing properties of nonnegativity constraints in least squares image

reconstruction,” International Journal of Pure and Applied Mathematics, vol. 43, no. 1, pp. 95–109, 2008.

[8] K. B. Nakshatralaa, M. K. Mudunurua, and A. J. Valocchib, “A numerical framework for diffusion-controlled bimolecular-reactive

systems to enforce maximum principles and the non-negative constraint,” Journal of Computational Physics, vol. 253, no. 15, pp.

278–307, November 2013.

[9] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 44–57, January 2002.

[10] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp.

788–791, October 1999.

[11] R. Zass and A. Shashua, “Nonnegative sparse PCA,” in Advances in Neural Information Processing Sysems, B. Schölkopf, J. Platt,



19

and T. Hoffman, Eds., vol. 19, pp. 1561–1568. MIT Press, Cambridge, MA, 2007.

[12] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing

and other inverse problems,” IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 586–597, December 2007.

[13] L. K. Saul, F. Sha, and D. D. Lee, “Statistical signal processing with nonnegative constraints,” in Proc. of European Conference on

Speech Communication and Technology, Geneva, Switerland, September 2003, pp. 1001–1004.

[14] Y. Lin and D. D. Lee, “Bayesian regularization and nonnegative deconvolution for room impulse response estimation,” IEEE Transactions

on Signal Processing, vol. 54, no. 3, pp. 839–847, March 2006.

[15] R. Zdunek and M. J. Nawrocki, “Improved modeling of highly loaded UMTS network with nonnegativity constraints,” in Proc. of

Annual IEEE International Sysmbosium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, September

2006, pp. 1–5.

[16] M. A. Khajehnejad, A. G. Dimakis, W. Xu, and B. Hassibi, “Sparse recovery of nonnegative signals with minimal expansion,” IEEE

Transactions on Signal Processing, vol. 59, no. 1, pp. 196–208, January 2011.

[17] C. L. Lawson and R. J. Hanson, Solving Least Square Problems, Society for Industrial and applied mathematics, Philadelphia, PA,

1995.

[18] R. Bro and S. De Jong, “A fast non-negativity-constrained least squares algorithm,” Journal of Chemometrics, vol. 11, no. 5, pp.

393–401, September/October 1997.
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