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a  b  s  t  r  a  c  t

This  paper  presents  a new  transient  stabilization  with  voltage  regulation  analysis  approach  of  a syn-
chronous  power  generator  driven  by  steam  turbine  and  connected  to an  infinite  bus.  The  aim  is to obtain
high  performance  for  the terminal  voltage  and  the  rotor  speed  simultaneously  under  a large  sudden  fault
and a wide  range  of  operating  conditions.  The  methodology  adopted  is based  on sliding  mode  control
technique.  First,  a nonlinear  sliding  mode  observer  for the  synchronous  machine  damper  currents  is con-
eywords:
liding mode control
yapunov methods
amper currents observer

structed.  Second,  the  stabilizing  feedback  laws  for  the  complete  ninth  order  model  of  a  power  system,
which  takes  into  account  the  stator  dynamics  as well  as  the  damper  effects,  are  developed.  They  are
shown  to be  asymptotically  stable  in  the context  of  Lyapunov  theory.  Simulation  results,  for  a  single-
Machine-Infinite-Bus  (SMIB)  power  system,  are  given  to demonstrate  the effectiveness  of the  proposed

roller
ower system
ransient stability

combined  observer–cont

. Introduction

Successful operation of power system depends largely on the
bility to provide reliable and uninterrupted service. The reliabil-
ty of the power supply implies much more than merely being
vailable. Ideally, the loads must be fed at constant voltage and
requency at all times. However, small or large disturbances such
s power changes or short circuits may  transpire. One of the most
ital operation demands is maintaining good stability and transient
erformance of the terminal voltage, rotor speed and the power
ransfer to the network [1,2]. This requirement should be achieved
y an adequate control of the system.

The high complexity and nonlinearity of power systems,
ogether with their almost continuously time varying nature,
equire candidate controllers to be able to take into account the
mportant nonlinearities of the power system model and to be inde-
endent of the equilibrium point. Much attention has been given
o the application of nonlinear control techniques to solve the tran-
ient stabilization problem [3,4]. Most of these controllers are based
n feedback linearization technique [5–9]. The main objective in
hese works was to enhance the system stability and damping per-
ormance through excitation control. The nonlinear model used in

hese studies was a reduced third order model of the synchronous

achine. In Ref. [10], the feedback linearization technique was used
o control the rotor angle as well as the terminal voltage, using

∗ Corresponding author. Tel.: +21 2678 03 50 59; fax: +21 2524 66 80 12.
E-mail addresses: ouassaid@yahoo.fr, ouassaid@emi.ac.ma (M.  Ouassaid).
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the excitation and the turbine’s servo-motor input. It is based on a
7th order model of the synchronous machine. Feedback lineariza-
tion is recently enhanced by using robust control designs such as
H∝ control and L2 disturbance attenuation [11,12]. Several modern
control approaches including methods based on the passivity prin-
ciple [13,14], fuzzy logic and neural networks [15,16],  backstepping
design [17,18],  have been used to design continuous nonlinear
control algorithms which overcome the known limitations of tra-
ditional linear controllers: Automatic Voltage Regulator (AVR) and
the Power System Stabilizer (PSS) [19–22].

New modern control techniques will continue to fascinate
researchers looking for further improvements in high performance
power system stability. The sliding mode control approach has
been recognized as one of the efficient tools to design robust
controllers for complex high-order nonlinear dynamic plants oper-
ating under various uncertainty conditions. The major advantage
of sliding mode is the low sensitivity to plant parameter variations
and disturbances which relaxes the necessity of exact modelling
[23].

In this paper, a sliding mode controller has been constructed
based on a time-varying sliding surface to control the rotor speed
and terminal voltage, simultaneously, in order to enhance the tran-
sient stability and to ensure good post-fault voltage regulation for
power system. It is based on a detailed 9th order model of a system
which consists of a steam turbine and SMIB and takes into account

the stator dynamics as well as the damper winding effects and
practical limitation on controls. However damper currents are not
available for measurement. Consequently, an observer of damper
currents is proposed.

dx.doi.org/10.1016/j.epsr.2011.10.014
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:ouassaid@yahoo.fr
mailto:ouassaid@emi.ac.ma
dx.doi.org/10.1016/j.epsr.2011.10.014
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The rest of this paper is organized as follows. In Section 2,
he dynamic equations of the system under study are presented.

 new nonlinear observer for damper winding currents is devel-
ped in Section 3. In Section 4, the nonlinear excitation voltage
nd rotor speed controllers are derived. Section 5 deals with a
umber of numerical simulations results of the proposed observer-
ased nonlinear controller. Finally, conclusions are mentioned

n Section 6.

. Mathematical model of power system studied

The system to be controlled, studied in this work, is shown in
ig. 1. It consists of synchronous generator driven by steam tur-
ine and connected to an infinite bus via a transmission line. The
ynchronous generator is described by a 7th order nonlinear math-
matical model which comprises three stator windings, one field
inding and two damper windings. The mathematical model of the
lant, which is presented in some details in [10,24] can be written
s follows:

Electrical equations:

ẋ1 = a11x1 + a12x2 + a13x3x6 + a14x4 + a15x6x5

+ a16 cos(−x7 + �) + b1ufd (1)

ẋ2 = a21x1 + a22x2 + a23x3x6 + a24x4 + a25x6x5

+ a26 cos(−x7 + �) + b2ufd (2)

ẋ3 = a31x1x6 + a32x2x6 + a33x3 + a34x4x6 + a35x5

+ a36 sin(−x7 + �) (3)

ẋ4 = a41x1 + a42x2 + a43x3x6 + a44x4 + a45x6x5

+ a46 cos(−x7 + �) + b3ufd (4)

ẋ5 = a51x1x6 + a52x2x6 + a53x3 + a54x4x6 + a55x5

+ a56 sin(−x7 + �) (5)

Mechanical equations:

ẋ6 = a61x6 + a62

(
x8

x6

)
− a62Te (6)

ẋ7 = ωR(x6 − 1) (7)

Turbine dynamics [25]:

ẋ8 = a81x8 + a82x9 (8)

Turbine valve control [25]:

ẋ9 = a91x9 + a92x6 + b4ug (9)

where x = [id, ifd, iq, ikd, ikq, ω, ı, Pm, Xe]T is the vector of state
variables, ufd the excitation control input, ug the input power
of control system. The parameters aij and bi are described in
Appendix A.

The machine terminal voltage is calculated from Park compo-
ents vd and vq as follows [10,24]:

t = (v2
d + v2

q)
1/2

(10)

ith
d = c11x1 + c12x2 + c13x3x6 + c14x4 + c15x5x6

+ c16 cos(−x7 + �) + c17ufd (11)
ms Research 84 (2012) 135– 143

vq = c21x1x6 + c22x2x6 + c23x3 + c24x4x6 + c25x5 + c26 sin(−x7 + �)

(12)

where cij are coefficients which depend on the coefficients aij, on the
infinite bus phase voltage V∞ and the transmission line parameters
Re and Le. They are described in Appendix A.

Available states for synchronous generator are the stator phase
currents id and iq, voltages at the terminals of the machine vd and
vq, field current ifd. It is also assumed that the angular speed ω and
the power angle ı are available for measurement [26]. In the next
section the development of an observer of the damper currents ikd

and ikq will be presented.

3. Development of a sliding mode observer for the damper
winding currents

For continuous time systems, the state space representation of
the electrical dynamics of the power system model (1)–(5) is:

d

dt

[
x1
x2
x3

]
= F11

[
x1
x2
x3

]
+ F12

[
x4
x5

]
+
[

b1
b2
0

]
ufd + H1(t) (13)

d

dt

[
x4
x5

]
= F21

[
x1
x2
x3

]
+ F22

[
x4
x5

]
+
[

b3
0

]
ufd + H2(t) (14)

where

H1(t) = [a16 cos(−x7 + �), a26 cos(−x7 + �), a36 sin(−x7 + �)] T ,

H2(t) = [a46 cos(−x7 + �), a56 sin(−x7 + �)] T

F11 =
[

a11 a12 a13x6
a21 a22 a23x6

a31x6 a32x6 a33

]
, F21 =

[
a41 a42 a43x6

a51x6 a52x6 a53

]
,

F12 =
[

a14 a15x6
a24 a25x6

a34x6 a35

]
, F22 =

[
a44 a45x6

a54x6 a55

]

To construct the sliding mode observer, let define the switching
surface S as follows:

S(t) =
[

x̂1 − x1
x̂2 − x2
x̂3 − x3

]
≡
[

e1
e2
e3

]
= 0 (15)

Then, an observer for (13) is constructed as:

d

dt

[
x̂1
x̂2
x̂3

]
= F11

[
x̂1
x̂2
x̂3

]
+ F12

[
x̂4
x̂5

]
+
[

b1
b2
0

]
ufd

+ H1(t) + K

[
sgn(x̂1 − x1)
sgn(x̂2 − x2)
sgn(x̂3 − x3)

]
(16)

where x̂1, x̂2 and x̂3 are the observed values of id, ifd and iq, K is the
switching gain, and sgn is the sign function. Moreover, the damper
current observer is given from (14) as:

d

dt

[
x̂4
x̂5

]
= F21

[
x̂1
x̂2
x̂3

]
+ F22

[
x̂4
x̂5

]
+
[

b3
0

]
ufd + H2(t) (17)

where x̂4 and x̂5 are the observed values of ikd and ikq.
Subtracting (13) from (16), the error dynamics can be written:

d
[

e1
]

= F

[
e1
]

+ F

[
x̃4

]
+ K

[
sgn e1

]
(18)
dt
e2
e3

11 e2
e3

12 x̃5
sgn e2
sgn e3

where x̃4 and x̃5 are the estimation errors of the damper currents
x4 and x5.
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The switching gain is designed as:

K = min

×
{−a11|e1| − (a12e2 + a13ωe3 + a14x̃4 + a15ωx̃5)sgn e1

−a22 |e2| − (a21e1 + a23ωe3 + a24x̃4 + a25ωx̃5) sgn e2
−a33 |e3| − (a31ωe1 + a32ωe2 + a34ωx̃4 + a35x̃5) sgn e3

}
− �

(19)

here � is a positive small value.

heorem 1. The globally asymptotic stability of (18) is guaranteed,
f the switching gain is given by (19).

roof. The stability of the overall structure is guaranteed through
he stability of the direct axis and quadrature axis currents x1, x2,
nd field current x3 observer. The Lyapunov function for the pro-
osed sliding mode damper current is chosen as:

obs = 1
2

ST �S (20)

here � is an identity positive matrix.
Therefore, the derivative of the Lyapunov function is

˙ obs = ST � Ṡ =
[

e1
e2
e3

]T

�

(
F11

[
e1
e2
e3

]
+ F12

[
x̃4
x̃5

]
+ K

[
sgn e1
sgn e2
sgn e3

])

= G1 + G2 + G3 (21)

here

G1 = a11e2
1 + a12e1e2 + a13ωe1e3 + a14e1x̃4 + a15ωe1x̃5 + K |e1|

G2 = a21e1e2 + a22e2
2 + a23ωe2e3 + a24e2x̃4 + a25ωe2x̃5 + K |e2|

G3 = a31ωe1e3 + a32ωe2e3 + a33e2
3 + a34ωe3x̃4 + a35e3x̃5 + K |e3|

sing the designed switching gain in (19), both G1, G2 and G3 are
egatives. Therefore, V̇obs is a negative definite, and the sliding
ode condition is satisfied [27]. Furthermore the global asymptotic

tability of the observer is guaranteed.
According to (19) by a proper selection of �, the influence of

arametric uncertainties of the SMIB can be much reduced.
The switching gain must large enough to satisfy the reaching

ondition of sliding mode. Hence the estimation error is confined
nto the sliding hyerplane:
d

dt

[
e1
e2
e3

]
=
[

e1
e2
e3

]
= 0 (22)
 configuration.

However, if the switching gain is too large, the chattering noise
may  lead to estimation errors. To avoid the chattering phenomena,
the sign function is replaced by the following continuous function
in simulation:

S(t)
|S(t)| + ς1

where ς1 is a positive constant. �

4. Design of sliding mode terminal voltage and speed
controller

4.1. Terminal voltage control law

The dynamic of the terminal voltage (23), is obtained through
the time derivative of (10) using (11) and (12) where the damper
currents are replaced by the observer (17):

dvt

dt
= 1

vt

(
vd

dvd

dt
+ vq

dvq

dt

)
= vq

vt

dvq

dt
+ c17

vd

vt

dufd

dt

+ vd

vt

[
c11

dx1

dt
+ c12

dx2

dt
+ c13x6

dx3

dt
+ c13x3

dx6

dt

+c14
dx̂4

dt
+ c15x6

dx̂5

dt
+ c15x̂5

dx6

dt
+ c16

dx7

dt
sin(−x7 + �)

]

= c17
vd

vt

dufd

dt
+ f (x) (23)

where

f (x) = vq

vt

dvq

dt
+ vd

vt

[
c11

dx1

dt
+ c12

dx2

dt
+ c13x6

dx3

dt
+ c13x3

dx6

dt

+c14
dx̂4

dt
+ c15x̂5

dx6

dt
+ c15x6

dx̂5

dt
+ c16

dx7

dt
sin(−x7 + �)

]

Furthermore, we  define the tracking error between terminal volt-
age and its reference as:

e1 = vt − vref
t (24)
And its error dynamic is derived, using (23), as follows:

de1

dt
= c17

vd

vt

dufd

dt
+ f (x) (25)
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ccording to the (24), the proposed time-varying sliding surface is
efined by:

1 = K1e1(t) (26)

here K1 is a positive constant feedback gain. The next step is to
esign a control input which satisfies the sliding mode existence

aw. The control input is chosen to have the structure:

(t) = ueq(t) + un(t) (27)

here ueq(t) is an equivalent control-input that determines the
ystem’s behavior on the sliding surface and un(t) is a non-linear
witching input, which drives the state to the sliding surface and
aintains the state on the sliding surface in the presence of the

arameter variations and disturbances. The equivalent control-
nput is obtained from the invariance condition and is given by the
ollowing condition [23] S1 = 0 and Ṡ1 = 0 ⇒ u(t) = ueq(t)

From the above equation:

˙ 1 = K1c17
vd

vt

dufd

dt
+ K1f (x) = 0 (28)

herefore, the equivalent control-input is given as:

eq(t) = − vt

c17vd
f (x) (29)

y choosing the nonlinear switching input un(t) as follows:

n(t) = −˛1
vt

c17vd
sgn(e1) (30)

here ˛1 is a positive constant. The control input is given from (27),
29) and (30) as follows:

(t) = dufd

dt
= − vt

c17vd
(f (x) + ˛1 sgn(e1)) (31)

sing the proposed control law (31), the reachability of sliding
ode control of (25) is guaranteed.

.2. Sliding mode rotor speed controller

We now focused our attention to the rotor speed tracking objec-
ive. The sliding mode-based rotor speed control methodology
roposed consists of three steps:

Step 1: The rotor speed error is:

2 = x6 − ωref (32)

here ωref = 1 p.u. is the desired trajectory. The sliding surface is
elected as:

2 = K2e2(t) (33)

here K2 is a positive constant. From (32) and (6),  the derivative of
he sliding surface (33) can be given as:

dS2

dt
= K2

(
a61x6 + a62

x8

x6
− a62Te

)
(34)

he x8 can be viewed as a virtual control in the above equation.
o ensure the Lyapunov stability criteria i.e. Ṡ2S2 ≺ 0 we  define the
onlinear control input x∗

8eq as:

∗
8eq = x6

a62
(a62Te − a61x6) (35)

he nonlinear switching input x∗
8n can be chosen as follows:
∗
8n = −˛2

x6

a62
sgn(e2) (36)

here ˛2 is a positive constant.
Fig. 2. Block diagram of the sliding mode damper currents observer.

Then, the stabilizing function of the mechanical power is
obtained as:

x∗
8 = x6

a62
(a62Te − a61x6 − ˛2 sgn(e2)) (37)

When a fault occurs, large currents and torques are produced. This
electrical perturbation may  destabilize the operating conditions.
Hence, it becomes necessary to account for these uncertainties by
designing a higher performance controller.

In (37), as electromagnetic load Te is unknown, when fault
occurs, it has to be estimated adaptively. Thus, let us define:

x̂∗
8 = x6

a62
(a62T̂e − a61x6 − ˛2 sgn(e2)) (38)

where T̂e is the estimated value of the electromagnetic load which
should be determined later. Substituting (38) in (34), the rotor
speed sliding surface dynamics becomes:

dS2

dt
= K2(−˛2 sgn(e2) − a62T̃e) (39)

where T̃e = Te − T̂e is the estimation error of electromagnetic load.
Step 2: Since the mechanical power x8 is not our control input,

the stabilizing error between x8 and its desired trajectory x∗
8 is

defined as:

e3 = x∗
8 − x8 (40)

To stabilize the mechanical power x8, the sliding surface is selected
as:

S3 = K3e3(t) (41)

where K3 is a positive constant. The derivative of S3 using (40) and
(8) is given as:

dS3

dt
= K3

(
a81x8 + a82x9 − dx∗

8
dt

)
(42)

If we consider the steam valve opening x9 as a second virtual con-
trol, the equivalent control x∗

9eq is obtained as the solution of the

problem Ṡ3(t) = 0.

x∗
9eq = 1

a82

(
dx∗

8
dt

− a81x8

)
(43)

Thus, the stabilizing function of the steam valve opening is obtained

as:

x∗
9 = 1

a82

(
dx∗

8
dt

− a81x8 − ˛3 sgn(e3)

)
(44)
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Fig. 3. Simulated result of the proposed controller u

here ˛3 is a positive constant. Substituting (44) in (42), the steam
alve opening sliding surface dynamics becomes:

dS3

dt
= −˛3K3 sgn(e3) (45)

Step 3: In order to go one step ahead the steam valve opening
rror is defined as:

4 = x9 − x∗
9 (46)

y defining a new sliding surface S4(t) = K4e4(t) the derivative of
4 is found by time differentiation of (46) and using (9):

dS4

dt
= K4

(
a91x9 + a92x6 + b4ug − dx∗

9
dt

)
(47)

o satisfy the reaching condition Ṡ4S4 ≺ 0, the equivalent control
geq(t) is given as:

geq = 1
b4

(
dx∗

9
dt

− a91x9 − a92x6

)
(48)

ext, the following choice of feedback control is made:

g = 1
b4

(
dx∗

9
dt

− a91x9 − a92x6 − ˛4 sgn(e4)

)
(49)

.3. Stability analysis

heorem 3. The dynamic sliding mode control laws (31) and (49)

ith stabilizing functions (38) and (44) when applied to the single
achine infinite power system, guarantee the asymptotic convergence

f the outputs vt and x6 = ω to their desired values vtref and ωref = 1,
espectively.
e (s)

large sudden fault and operating point Pm = 0,6 p.u.

Proof. Consider a positive definite Lyapunov function:

Vcon = 1
2

S2
1 + 1

2
S2

2 + 1
2

S2
3 + 1

2
S2

4 + 1
2�

T̃2
e (50)

Using (28), (39), (45) and (47), the derivative of (50) can be
derived as follows:

V̇con = Ṡ1S1 + Ṡ2S2 + Ṡ3S3 + Ṡ4S4 + T̃e
1
�

dT̃e

dt
= K1c17

vd

vt

dufd

dt

+ K1f (x) + K2(−˛2sgn(e2) − a62T̃e) − ˛3K3 sgn(e3)

+ K4

(
a91x9 + a92x6 + b4ug − dx∗

9
dt

)
+ T̃e

1
�

dT̃e

dt
(51)

Substituting the control laws (31) and (49) in (51) produces:

V̇con = −˛1K2
1 e1 sgn(e1) − ˛2K2

2 e2 sgn(e2) − ˛3K2
3 e3 sgn(e3)

− ˛4K2
4 e4 sgn(e3) − K2

2 a62T̃ee2 + T̃e
1
�

dT̃e

dt
= −˛1K2

1 |e1|

− ˛2K2
2 |e2| − ˛3K2

3 |e3| − ˛4K2
4 |e4| +

(
1
�

dT̃e

dt
− K2

2 a62e2

)
T̃e

(52)

To make the time derivative of Vcon strictly negative, we choose the
adaptive law as:

dT̃e

dt
= �a62K2

2 e2 (53)

Thus:
Vcon = −˛1K1 |e1| − ˛2K2 |e2| − ˛3K3 |e3| − ˛4K4 |e4|

= −
4∑

i=1

˛iK
2
i |ei| < 0 (54)
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Fig. 4. Simulated result of the proposed controller u

rom the above analysis, it is evident that the reaching condition is
uaranteed. �

emark. In order to eliminate the chattering, the discontinuous
ontrol components in (31), (38), (44) and (49) can be replaced by

 smooth sliding mode component to yield:

dufd

dt
= − vt

c17vd

(
f (x) + ˛1

S1(t)
|S1(t)| + �2

)

∗
8 = x6

a62

(
a62Te − a61x6 − ˛2

S2(t)
|S2(t)| + �3

)
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ig. 5. Tracking performance comparison of the proposed observer based controller and 
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 (s)

 large sudden fault and operating point Pm = 0,9 p.u.

x∗
9 = 1

a82

(
dx∗

8
dt

− a81x8 − ˛3
S3(t)

|S3(t)| + �4

)

ug = 1
b4

(
dx∗

9
dt

− a91x9 − a92x6 − ˛4
S4(t)

|S4(t)| + �5

)

where �i � 0 is a small constant. This modification creates a small
boundary layer around the switching surface in which the sys-
tem trajectory remains. Therefore, the chattering problem can be
reduced significantly [23].
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. Simulation results and discussion

In order to show the validity of the mathematical analysis

nd, hence, to evaluate the performance of the designed non-
inear control scheme, simulation works are carried out for the
ower System under severe disturbance conditions which cause
ignificant deviation in generator loading. The performance of
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the nonlinear controller was  tested on the complete 9th order
model of SMIB power system (202 MVA, 13,7 kV), including all
kinds of nonlinearities such as exciter ceilings, control signal

limiters, etc. and speed regulator. The physical limits of the plant
are:

max|vfd| = 10 p.u., and 0 ≤ Xe(t) ≤ 1
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Table  1
Parameters of the transmission line in p.u.

Parameter Value

Le , inductance of the transmission line 0.4
Re , resistance of the transmission line 0.02

Table 2
Parameters of the power synchronous generator in p.u.

Parameter Value

Rs , stator resistance 1.096 × 10−3

Rfd , field resistance 7.42 × 10−4

Rkd , direct damper winding resistance 13.1 × 10−3

Rkq , quadrature damper winding resistance 54 × 10−3

Ld , direct self-inductance 1.700
Lq , quadrature self-inductances 1.640
Lfd , rotor self inductance 1.650
Lkd , direct damper winding self inductance 1.605
Lkq , quadrature damper winding self inductance 1.526
Lmd , direct magnetizing inductance 1.550
Lmq , quadrature magnetizing inductance 1.490
V∝ , infinite bus voltage 1
D,  damping constant 0
H,  inertia constant 2.37 s

Table 3
Parameters of the steam turbine and speed governor.

Parameter Value

Tt , time constant of the turbine 0.35 s
Kt , gain of the turbine 1

T
u
i
t
v

5

m
g
r
c
p
c
b
w
A
r
t

R  regulation constant of the system 0.05
Tg , time constant of the speed governor 0.2 s
Kg , gain of the speed governor 1

he system configuration is presented as shown in Fig. 1. The sim-
lation of the proposed sliding mode damper currents observer is

mplemented based on the scheme shown in Fig. 2. Digital simula-
ions have been carried out using Matlab–Simulink. The parameter
alues used in the ensuing simulation are given in the Appendix B.

.1. Observer based controller performance evaluation

First, we verify the stability and asymptotic tracking perfor-
ance of the proposed control systems. The simulated results are

iven in Figs. 3 and 4. It is shown terminal voltage, rotor speed and
otor angle of the power system, respectively. The operating points
onsidered are Pm = 0.6 p.u. and 0.9 p.u. The fault considered in this
aper is a symmetrical three-phase short circuit, which occurs
loser to the generator bus, at t = 10 s and removed by opening the
arkers of the faulted line at t = 10.1 s. The results are compared

ith those of the linear IEEE type 1 AVR + PSS and speed regulator.
s it can be seen, the proposed controller can quickly and accu-
ately track the desired terminal voltage and rotor speed despite
he different operating points.
ms Research 84 (2012) 135– 143

5.2. Comparison of dynamic performances for proposed
controller and non linear controllers

In order to prove the robustness of the proposed controller, the
results are compared with two non linear controllers: (i) Feed-
back Linearization Technique (FLT) Ref. [10] and (ii) Backstepping
Ref. [17]. The operating point considered is Pm = 0.725 p.u. The
fault occurs closer to the generator bus. The simulation results are
presented in Fig. 5. It can be seen that both dynamics of the ter-
minal voltage and the rotor speed settle to their prefault values
very quickly with proposed observer based controller. It is obvious
that with the derived high control accuracy and stability can be
achieved.

5.3. Robustness to parameters uncertainties

The variation of system parameters is considered for robust-
ness evaluation of the proposed observer-based controller. The
values of the transmission line (Le, Re) and the inertia constant
H increased by +20% and −20% from their original values, respec-
tively. The responses of the terminal voltage and rotor speed are
shown in Fig. 6. In addition to the abrupt and permanent varia-
tion of the power system parameters a three-phase short-circuit is
simulated at the terminal of the generator. Figs. 7 and 8 show the
performances of the combined observer controller and the other
controllers Ref. [10] and Ref. [17]. It can be seen that the designed
control scheme is able to deal with the uncertainties of param-
eters and preserve the global stability of the system with good
performances in transient and steady states.

6. Conclusion

In this paper, a new nonlinear observer–controller scheme has
been developed and applied to the single machine infinite bus
power system, based on the complete 7th order model of the
synchronous generator. The aim of the study is to achieve both
transient stability enhancement and good postfault performance
of the generator terminal voltage.

The sliding mode strategy was adopted to develop a nonlin-
ear observer of damper winding currents and nonlinear terminal
voltage and rotor speed controller. The detailed derivation for the
control laws has been provided. Globally exponentially stable of
both the observer and control laws has been proven by applying
Lyapunov stability theory.

Simulation results have confirmed that the observer-based non-
linear controller can effectively improve the transient stability
and voltage regulation under large sudden fault. The combined
observer–controller scheme demonstrates consistent superiority

opposed to a system with linear controllers (IEEE type 1 AVR + PSS)
and nonlinear controllers. It can be seen from the simulation study
that the designed sliding mode observer based-controller possesses
a great robustness to deal with parameter uncertainties.
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a11 = −(Rs + Re)(LfdLkd − L2
md

)ωRD−1
d

, a12 = −Rfd(LmqLkd − L2
md

)ωR

a15 = −Lmq(LfdLkd − L2
md

)ωRD−1
d

, a14 = Rkd((Ld + Le)Lmd − L2
md

)ωRD

b1 = (LmdLkd − L2
md

)ωRD−1
d

, a21 = −(Rs + Re)(LmdLkd − L2
md

)ωRD−1
d

,

a23 = (Lq + Le)(LmdLkd − L2
md

)ωRD−1
d

, a24 = Rkd((Ld + Le)Lmd − L2
md

)

a26 = −V∞(LmdLkd − L2
md

)ωRD−1
d

, b2 = ((Ld + Lfd)Lkd − L2
md

)ωRD−1
d

,

a32 = LmdLkqωRD−1
q , a33 = −(Rs + Re)LkqωRD−1

q , a34 = LmdLkqωRD

a41 = −(Rs + Re)(LfdLmd − L2
md

)ωRD−1
d

, a42 = Rfd((Ld + Le)Lmd − L2
md

a43 = (Lq + Le)(LmdLd − L2
md

)ωRD−1
d

, a44 = −Rkd((Ld + Le)Lfd − L2
md

)

b3 = ((Ld + Le)Lmd − L2
md

)ωRD−1
d

, a51 = −(Ld + Le)LmqωRD−1
q , a52

a54 = LmdLmqωRD−1
q , a55 = −Rkq(Lq + Le)ωRD−1

q , a56 = −V∞Lmqω

a81 = −(Tm)−1, a82 = Km(Tm)−1, a91 = −(Tg)−1, a92 = −Kg(TgR

c12 = a12Leω−1
R , c13 = Le(a13ω−1

R − 1),  c14 = a14Leω−1
R , c15 = a1

c21 = Le + a31Leω−1
R , c22 = a32Leω−1

R , c23 = a33Leω−1
R + Re, c24

here we have denoted

Dd = (Ld + Le)LfdLkd − L2
md

(Ld + Lfd + Lkd) + 2L3
md

, Dq = (Lq + Le)Lkq

ppendix B. The parameters of the system are as follows
24,25] (Tables 1–3)
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