
1

Multi-step gradient methods

for networked optimization
Euhanna Ghadimi, Iman Shames, and Mikael Johansson

Abstract

We develop multi-step gradient methods for network-constrained optimization of strongly convex functions with Lipschitz-

continuous gradients. Given the topology of the underlying network and bounds on the Hessian of the objective function, we

determine the algorithm parameters that guarantee the fastest convergence and characterize situations when significant speed-ups

over the standard gradient method are obtained. Furthermore, we quantify how uncertainty in problem data at design-time affects

the run-time performance of the gradient method and its multi-step counterpart, and conclude that in most cases the multi-step

method outperforms gradient descent. Finally, we apply the proposed technique to three engineering problems: resource allocation

under network-wide budget constraint, distributed averaging, and Internet congestion control. In all cases, our proposed algorithms

converge significantly faster than the state-of-the art.

I. INTRODUCTION

Distributed optimization has recently attracted significant attention from several research communities. Examples include the

work on network utility maximization for resource allocation in communication networks [1], distributed coordination of multi-

agent systems [2], collaborative estimation in wireless sensor networks [3], distributed machine learning [4], and many others.

The majority of these praxes apply gradient or sub-gradient methods to the dual formulation of the decision problem. Although

gradient methods are easy to implement and require modest computations, they suffer from slow convergence. In some cases,

such as the development of distributed power control algorithms for cellular phones [5], one can replace gradient methods by

fixed-point iterations and achieve improved convergence rates. For other problems, such as average consensus [6], a number of

heuristic methods have been proposed that improve the convergence time of the standard method [7], [8]. However, we are not

interested in tailoring techniques to individual problems; our aim is to develop general-purpose schemes that retain the simplicity

of the gradient method but improve convergence times.

Even if the optimization problem is convex and the subgradient method is guaranteed to converge to an optimal solution,

the rate of convergence is very modest. The convergence rate of the gradient method is improved if the objective function is

differentiable with Lipschitz-continuous gradient, and even more so if the function is also strongly convex [9]. When the objective

and constraint functions are smooth, several techniques exist that allow for even shorter solution times. One such technique is

higher-order methods, such as Newton’s method [10], which use both the gradient and the Hessian of the objective function.

Although distributed Newton methods have recently been developed for special problem classes (e.g., [11], [12]), they impose

large communication overhead for collecting global Hessian information. Another way to obtain faster convergence is to use

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

E. Ghadimi and M. Johansson are with the ACCESS Linnaeus Center, Electrical Engineering, Royal Institute of Technology, Stockholm, Sweden. {euhanna,
mikaelj}@ee.kth.se. I. Shames is with the Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia.
iman.shames@unimelb.edu.au.

August 6, 2013 DRAFT

2

multi-step methods [13], [10]. These methods rely only on gradient information but use a history of the past iterates when

computing the future ones. We explore the latter approach for distributed optimization.

This paper makes the following contributions. First, we develop a multi-step weighted gradient method that maintains a

network-wide constraint on the decision variables throughout the iterations. The accelerated algorithm is based on the heavy

ball method by Polyak [13] extended to the networked setting. We derive optimal algorithm parameters, show that the method

has linear convergence rate and quantify the improvement in convergence factor over the gradient method. Our analysis shows

that method is particularly advantageous when the eigenvalues of the Hessian of the objective function and/or the eigenvalues

of the graph Laplacian of the underlying network have a large spread. Second, we investigate how similar techniques can be

used to accelerate dual decomposition across a network of decision-makers. In particular, given smoothness parameters of the

objective function, we present closed-form expressions for the optimal parameters of an accelerated gradient method for the dual.

Third, we quantify how the convergence properties of the algorithm are affected when the algorithm is tuned using misestimated

problem parameters. This robustness analysis shows that the accelerated algorithm endures parameter violations well and in most

cases outperforms its non-accelerated counterpart. Finally, we apply the developed algorithms to three case studies: networked

resource allocation, consensus, and network flow control. In each application we demonstrate superior performance compared

to alternatives from the literature.

The paper is organized as follows. In Section II, we introduce our networked optimization problem. Section III reviews multi-

step gradient techniques. Section IV proposes a multi-step weighted gradient algorithm, establishes conditions for its convergence

and derives optimal step-size parameters. Section V develops a technique for accelerating the dual problem based on parameters

for the (smooth) primal. Section VI presents a robustness analysis of the multi-step algorithm in the presence of uncertainty.

Section VII applies the proposed techniques to three engineering problems: resource allocation, consensus and network flow

control; numerical results and performance comparisons are presented for each case study. Finally, concluding remarks are given

in Section VIII.

II. ASSUMPTIONS AND PROBLEM FORMULATION

This paper is concerned with collaborative optimization by a network of decision-makers. Each decision-maker v is endowed

with a loss function fv : R 7→ R, has control of one decision-variable xv ∈ R, and collaborates with the others to solve

minimize
∑
v∈V fv(xv)

subject to Ax = b,
(1)

for given matrices A ∈ Rm×n and b ∈ Rm. We will assume that b lies in the range space of A, i.e. that there exists at least

one decision vector x that satisfies the constraints. The physical information exchange between decision-makers is represented

by a graph G = (V, E) with vertex set V = {1, 2, . . . , n} and edge set E ⊆ V × V . Specifically, at each time t, we will assume

that decision-maker v has access to ∇fw(xw(t)) for all its neighbors w ∈ Nv , {w | (v, w) ∈ E}.
The formulation (1) is more general that it might first appear. For example, problems with coupled objectives can be put on the

form (1) by first introducing new variables, which act as local copies of the shared variable, and then constraining these copies

to be equal (see, e.g., [14]). We will use this trick in Section VII-B. To use such modeling techniques in their fullest generality

(e.g. to allow loss functions to be coupled through several distinct decision variables), one would need to allow the loss functions

to be multivariable. While the results in this paper are generalizable to multivariable loss functions, we have chosen to present

the scalar case for ease of notation.

August 6, 2013 DRAFT

3

Most acceleration techniques in the literature (e.g. [9], [15], [16]) require that the loss functions are smooth and convex.

Similarly, we will make the following assumptions:

Assumption 1: Each loss function fv is convex and twice continuously differentiable with

lv ≤ ∇2fv(xv) ≤ uv, ∀xv, (2)

for some positive real constants lv, uv with 0 < lv ≤ uv .

Some remarks are in order. Let l = minv∈V lv , u = maxv∈V uv and define f(x):=
∑
v∈V fv(xv). Then, Assumption 1 ensures

that f(x) is strongly convex with modulus l

f(y) ≥ f(x) + (y − x)>∇f(x) +
l

2
‖y − x‖2 ∀(x, y),

that its gradient is Lipschitz-continuous with constant u

f(y) ≤ f(x) + (y − x)>∇f(x) +
u

2
‖y − x‖2 ∀(x, y),

and that the Hessian of f satisfies

lI ≤ ∇2f(x) ≤ uI ∀x. (3)

See, e.g, [9, Lemma 1.2.2 and Theorem 2.1.11] for details. Furthermore, Assumption 1 guarantees that (1) is a convex optimization

problem whose unique optimizer x? satisfies

Ax? = b, ∇f(x?) = A>µ?, (4)

where µ? ∈ Rm is the vector of optimal Lagrange multipliers for the linear constraints.

III. BACKGROUND ON MULTI-STEP METHODS

The basic gradient method for unconstrained minimization of a convex function f(x) takes the form

x(k + 1) = x(k)− α∇f(x(k)), (5)

where α > 0 is a fixed step-size parameter. Assume that f(x) is strongly convex with modulus l and has Lipschitz-continuous

gradient with constant u. Then if α < 2/u, the sequence {x(k)} generated by (5) converges to x? at linear rate, i.e. there

exists a convergence factor q ∈ (0, 1) such that ‖x(k + 1)− x?‖ ≤ q‖x(k)− x?‖ for all k. The smallest convergence factor is

q = (u− l)/(u+ l) obtained for α = 2/(l + u) (see, e.g., [13]).

While the convergence rate cannot be improved unless higher-order information is considered [13], the convergence factor q

can be meliorated by accounting for the history of iterates when computing the ones to come. Methods in which the next iterate

depends not only on the current iterate but also on the preceding ones are called multi-step methods. The simplest multi-step

extension of the gradient method is

x(k + 1) = x(k)− α∇f(x(k)) + β (x(k)− x(k − 1)) , (6)

for fixed step-size parameters α > 0 and β > 0. This technique, originally proposed by Polyak, is sometimes called the heavy-ball

method from the physical interpretation of the added “momentum term”. For a centralized set-up, Polyak derived the optimal

August 6, 2013 DRAFT

4

step-size parameters and showed that these guarantee a convergence factor of (
√
u−
√
l)/(
√
u+
√
l), which is always smaller

than the convergence factor for the gradient method and significantly so when
√
u/
√
l is large.

In what follows, we will develop multi-step gradient methods for network-constrained optimization, analyze their convergence

properties and derive optimal step-size parameters.

IV. A MULTI-STEP WEIGHTED GRADIENT METHOD

In the absence of constraints, (1) is trivial to solve since the objective function is separable and each decision-maker could

simply minimize its loss independently of the others. Hence, it is the existence of constraints that makes (1) challenging. In

the optimization literature, there are essentially two ways of dealing with constraints. One way is to project iterates onto the

constraint set to maintain feasibility at all times; such a method will be developed in this section. The other way is to use dual

decomposition to eliminate couplings between decision-makers and solve the associated dual problem; we will consider such

techniques in Section V.

Computing the Euclidean projection onto the constraint of (1) typically requires the full decision vector x, which is not

available to the decision-makers in our setting. An alternative, explored e.g. in [17], is to consider weighted gradient methods

which use a linear combination of the information available to nodes to ensure that iterates remain feasible. For our problem

(1) the weighted gradient method takes the form

x(k + 1) = x(k)− αW∇f(x(k)). (7)

Here, W ∈ Rn×n is a weight matrix that should satisfy the following three conditions: (i) the locality of information exchange

between the decision makers should be preserved; (ii) provided that the initial point x(0) is feasible, the iterates generated by (7)

should remain feasible; and (iii), the fixed-points of (7) should satisfy the optimality conditions (4).

To ensure condition (i), W has to have the same sparsity pattern as the information graph G, i.e. Wvw = 0 if v 6= w and

(v, w) 6∈ E . In this way, the iterations (7) read

xv(k + 1) = xv(k)− α
∑

w∈v∪Nv

Wvw∇fw(xw(k)),

and can be executed by individual decision-makers based on the information that they have access to. Conditions (ii) and (iii)

translate into the following requirements (see [17] for details)

AW = 0, WA> = 0. (8)

The next example describes one particular problem instance.

Example 1: When the decision-makers are only constrained by a global resource budget, (1) reduces to

minimize
∑
v∈V fv(xv)

subject to
∑
v∈V xv = xtot.

A distributed algorithm for this problem was developed in [18] and interpreted as a weighted gradient method in [17]. In our

notation, A = 1T and b = xtot so in addition to the sparsity pattern, W should also satisfy 1>W = 0> and W1 = 0. In [17], it

was shown that the symmetric W that satisfies these constraints and guarantees the smallest convergence factor of the weighted

gradient iterations can be found by solving a convex optimization problem. In addition, [17] proposed several heuristics for

constructing a good W in a distributed manner.

August 6, 2013 DRAFT

5

A few comments are in order. First, not all constraint matrices A admit a weight matrix W that satisfies the above constraints,

hence not all problems on the form (1) are amendable to a distributed solution using a weighted gradient method. Second, to

find a feasible initial point x(0), typically, one needs to find a solution for the linear system of equations Ax = b in a distributed

way. This generally requires a separate distributed mechanism; see, e.g. [18] and [19, Chapter 2].

A. A multi-step weighted gradient method and its convergence

Consider the following multi-step weighted gradient iteration

x(k + 1) = x(k)− αW∇f(x) + β (x(k)− x(k − 1)) . (9)

Under the sparsity constraint on W detailed above, these iterations can be implemented by individual decision-makers. Moreover,

(8) ensures that if Ax(0) = Ax(1) = b then every iterate produced by (9) will also satisfy the linear constraints. The next theorem

characterizes the convergence of the iterations (9) and derives optimal step-size parameters α and β.

Theorem 1: Consider the optimization problem (1) under Assumption 1, and let x? denote its unique optimizer. Assume that

W has m < n eigenvalues at 0 and satisfies AW = 0 and WA> = 0. Let H = ∇2f(x?) and λ1(WH) ≤ λ2(WH) ≤
· · · ≤ λn(WH) be the (ordered) eigenvalues of WH so that λ = λm+1(WH) is the smallest non-zero eigenvalue of WH and

λ = λn(WH) is the largest. Then, if

0 ≤ β ≤ 1, 0 < α <
2

u

(1 + β)

λn(W)
,

the iterates (9) converge to x? at linear rate

‖x(k + 1)− x?‖ ≤ q‖x(k)− x?‖ ∀k ≥ 0,

with q = max
{√

β, |1 + β − αλ| − √β, |1 + β − αλ| − √β
}

. Moreover, the minimal value of q is

q? =

√
λ−√λ√
λ+
√
λ
,

obtained for step-sizes α = α? and β = β? where

α? =

(
2√

λ+
√
λ

)2

, β? =

(√
λ−√λ√
λ+
√
λ

)2

. (10)

Proof: See appendix for this and all other proofs.

Similar to the discussion in Section III, it is interesting to investigate when (9) significantly improves over the single-step

algorithm. In [17], it is shown that the best convergence factor of the weighted gradient iteration (7) is

q?0 =
λ− λ
λ+ λ

.

One can verify that q? ≤ q?0 , i.e. the optimally tuned multi-step method is never slower than the single-step method. Moreover,

the improvement in convergence factor depends on the quantity κ = λ/λ: when κ is large, the speed-up is roughly proportional to
√
κ. In the networked setting, there are two reasons for a large value of κ. One is simply that the Hessian of the objective function

is ill-conditioned, so that the ratio u/l is large. The other is that the matrix W is ill-conditioned, i.e. that λn(W)/λm+1(W)

is large. As we will see in the examples, the graph Laplacian is often a valid choice for W . Thus, there is a direct connection

between the topology of the underlying information graph and the convergence rate (improvements) of the multi-step weighted

August 6, 2013 DRAFT

6

gradient method. We will discuss this connection in detail in Section VII.

In many applications, we will not know H = ∇2f(x?), but only bounds such as (3). The next result can then be useful

Proposition 1: Let λW = lλm+1(W) and λW = uλn(W). Then λW ≤ λ and λW ≥ λ. Moreover, the step-sizes

α =

(
2√

λW +
√
λW

)2

, β =

(√
λW −

√
λW√

λW +
√
λW

)2

,

ensure the linear convergence of (9) with the convergence factor

q̃ =

√
λW −

√
λW√

λW +
√
λW

.

B. Optimal weight selection for the multi-step method

The results in the previous subsection provide optimal step-size parameters α and β for a given weight matrix W . However,

the expressions for the associated convergence factors depend on the eigenvalues of WH and optimizing the entries in W jointly

with the step-size parameters can yield even further speed-ups. We make the following observation.

Proposition 2: Under the hypotheses of Proposition 1,

(i) If H is known, then minimizing the convergence factor q? is equivalent to minimizing λ/λ.

(ii) If H is not known, while l and u in (3) are, then the weight matrix that minimizes q̃ is the one with minimal value of

λW /λW .

The next result shows how the optimal weight selection for both scenarios can be found via convex optimization.

Proposition 3: Let MG be the span of real symmetric matrices, Sn, whose sparsity pattern is induced by the graph G, i.e.

MG = {M ∈ Sn |Mvw = 0 if v 6= w and (v, w) 6∈ E}.

Then the weight matrix for (9) that minimizes λ/λ can be found by solving the convex optimization problem

minimize
W,t

t

subject to In−m ≤ P>H1/2WH1/2P ≤ tIn−m
W ∈MG , W ≥ 0, H1/2WH1/2V = 0,

(11)

where V = H−1/2A> and P ∈ Rn×n−m is a matrix of orthonormal vectors spanning the null space of V >.

Remark 1: When H is not known but the bounds l and u in (3) are, Proposition 2 suggests that one should look for a weight

matrix W that minimizes λW /λW . This can be done using the formulation in Proposition 3 by setting H = I .

Remark 2: In addition to the basic conditions that admissible weight matrices have to satisfy, Proposition 3 also requires that

W be positive semi-definite. Without this additional requirement (11) is not a convex optimization problem and generically has

no tractable solution (see [20], [21]). Designing distributed algorithms for constructing weight matrices that guarantee optimal

or close-to-optimal convergence factors is an open question and a subject for future investigations.

V. A MULTI-STEP DUAL ASCENT METHOD

When the constraint matrix A is such that the weight optimization problem (11) does not admit a solution, then we have no

structured approach to find a weight matrix W that guarantees convergence of the weighted multi-step gradient iterations. An

August 6, 2013 DRAFT

7

alternative approach for solving (1) can then be to use Lagrange relaxation, i.e. to introduce Lagrange multipliers µ ∈ Rm for

the equality constraints and solve the dual problem. The dual function associated with (1) is

d(µ) , inf
x

∑

v

{
fv(xv) +

(
m∑

r=1

µrArv

)
xv

}
−

m∑

r=1

µrbr. (12)

Since the dual function is separable in x, it can be evaluated in parallel. For a given Lagrange multiplier vector µ, each

decision-maker then needs to compute

x?v(µ) = arg min
z

fv(z) +

(
m∑

r=1

µrArv

)
z. (13)

The dual problem is to maximize d(µ) with respect to µ, i.e.,

minimize
µ

−d(µ) = f?(−A>µ) + b>µ,

where f?(y) , supx y>x − f(x) is the conjugate function. Recall that if f is strongly convex then f? and hence −d(·) are

convex and continuously differentiable [22]. Moreover, ∇d(µ) = Ax?(µ)− b. In light of our earlier discussion, it is natural to

attempt to solve the dual problem using a multi-step iteration on the form

µr(k + 1) = µr(k) + α (
∑
v Arvx

?
v(µ(k))− br)

+β (µr(k)− µr(k − 1)) .
(14)

To be able to execute the multi-step dual ascent iterations (13) and (14) in a distributed manner, decision-maker v needs to be

able to collect the Lagrange multipliers µr for all r such that Arv 6= 0, and the decision-maker in charge of updating µr needs

to be able to collect all x?v(µ) for all v with Arv 6= 0. This is certainly not always possible, but we will give two examples that

satisfy these requirements in Section VII.

To find the optimal step-sizes and estimate the convergence factors of the iterations, we need to be able to bound the strong

convexity modulus of d(µ) and the Lipschitz constant of its gradient. The following observation is in order:

Lemma 1: Consider the optimization problem (1) with associated dual function (12). Let f be a continuously differentiable

and closed convex function. Then,

(i) If f is strongly convex with modulus l, then −∇d is Lipschitz continuous with constant λn(AA>)/l.

(ii) If ∇f is Lipschitz continuous with constant u, then −d is strongly convex with modulus λ1(AA>)/u.

These dual bounds can be used to derive the following result:

Theorem 2: For the optimization problem (1) under Assumption 1, the multi-step dual ascent iterations (14) converge to µ?

at linear rate with the guaranteed convergence factor

q? =

√
uλn(AA>)−

√
lλ1(AA>)√

uλn(AA>) +
√
lλ1(AA>)

,

obtained for step-sizes:

α? =

(
2√

uλn(AA>) +
√
lλ1(AA>)

)2

,

β? =

(√
uλn(AA>)−

√
lλ1(AA>)√

uλn(AA>) +
√
lλ1(AA>)

)2

.

August 6, 2013 DRAFT

8

ǫ̃

ǫ
∼

−λ

ǫ̃ = −ǫ
∼
− λ

√
3

2
λ−λ

−λ

(a) Stability regions

ǫ̃

ǫ
∼

(λ̃+ ǫ̃

λ
∼
+ ǫ

∼

)1/2

>
λ

λ

Q1Q2

Q4Q3

ǫ̃ = −λ

ǫ
∼
= −λ

(b) Different perturbation regions

Fig. 1. Perturbations in the white and gray area correspond to the stable and unstable regions of multi-step algorithm respectively. (b) Multi-step algorithm
outperforms gradient iterations in (ε˜, ε̃) ∈ C\Q4. For symmetric errors in Q4 (along the line ε̃ = −ε˜) gradient might outperform multi-step algorithm.

The advantage of Theorem 2 is that it provides step-size parameters with guaranteed convergence factor using readily available

data of the primal problem. How close to optimal these results are depends on how tight the bounds in Lemma 1 are. If the

bounds are tight, then the step-sizes in Theorem 2 are truly optimal. The next example shows that a certain degree of conservatism

may be present, even for quadratic problems.

Example 2: Consider the quadratic minimization problem

minimize 1
2x
>Qx

subject to Ax = b,

where Q > 0 is positive-definite, A ∈ Rn×n is nonsingular and b ∈ Rn. This implies that the objective function is strongly

convex with modulus λ1(Q) and that its gradient is Lipschitz-continuous with constant λn(Q). Hence, according to Lemma 1,

−d is strongly convex with modulus λ1(AA>)/λn(Q) and its gradient is Lipschitz continuous with constant λn(AA>)/λ1(Q).

However, direct calculations reveal that

d(µ) = −1

2
µ>AQ−1A>µ− µ>b,

from which we see that −d has convexity modulus λ1(AQ−1A>) and that its gradient is Lipschitz continuous with constant

λn(AQ−1A>). By [23, p. 225], these bounds are tighter than those offered by Lemma 1. Specifically, for congruent matrices Q−1

and AQ−1A> there exists nonnegative real numbers θk such that λ1(AA>) ≤ θk ≤ λn(AA>) and θkλk(Q−1) = λk(AQ−1A>).

For k = 1 and n we obtain

λ1(AA>)

λn(Q)
≤ λ1(AQ−1A>), λn(AQ−1A>) ≤ λn(AA>)

λ1(Q)
.

For some important classes of problems, the bounds are, however, tight. One such example is the average consensus application

considered in Section VII.

August 6, 2013 DRAFT

9

VI. ROBUSTNESS ANALYSIS

The proposed multi-step methods have significantly improved convergence factors compared to the gradient iterations, and

particularly so when the Hessian of the loss function and/or the graph Laplacian of the network is ill-conditioned. The results

of Theorem 1 and Proposition 1 specify sufficient conditions for the convergence of multi-step iterations in terms of the design

parameters α, β and W . However, these parameters are determined based on upper and lower bounds on the Hessian and the

largest and smallest non-zero eigenvalue of W . In many applications, W and H might not be perfectly known, and λ and λ have

to be estimated based on available data. It is therefore important to analyze the sensitivity of the multi-step methods to errors in

these parameters to assess if the performance benefits prevail when the step-sizes are calculated using (slightly) misestimated λ

and λ. Such an analysis will be performed in this section.

Let
˜
λ and λ̃ denote the estimates of λ and λ available when tuning the step-sizes. We are interested in quantifying how the

convergence and the convergence factors of the gradient and the multi-step methods are affected when
˜
λ and λ̃ are used in the

step-size formulas that we have derived earlier. Theorem 1 provides some useful observations for the multi-step method. The

corresponding results for the weighted gradient method are summarized in the following lemma:

Lemma 2: Consider the weighted gradient iterations (7) and let λ and λ denote the largest and smallest non-zero eigenvalue

of WH , respectively. Then, for fixed step-size 0 < α < 2/λ (7) converges to x? at linear rate with convergence factor

qG = max
{
|1− αλ|, |1− αλ|

}
.

The minimal value q?G = (λ− λ)/(λ+ λ) is obtained for the step-size α = 2/(λ+ λ).

Combining this lemma with our previous results from Theorem 1 yields the following observation.

Proposition 4: Let
˜
λ and λ̃ be estimates of λ and λ, respectively, and assume that 0 <

˜
λ < λ̃. Then, for all values of

˜
λ and

λ̃ such that λ < λ̃+
˜
λ, both the weighted gradient iteration (7) with step-size

α̃ = 2/(λ̃+
˜
λ), (15)

and the multi-step method variant (9) with

α̃ =

(
2√

λ̃+
√
˜
λ

)2

, β̃ =

(√
λ̃−√

˜
λ√

λ̃+
√
˜
λ

)2

, (16)

converge to the optimizer x? of (1).

In practice, one should expect that λ̃ is overestimated, in which case both methods converge. However, convergence can be

guaranteed for a much wider range of perturbations. Fig. 1(a) considers perturbations of the form
˜
λ = λ +

˜
ε and λ̃ = λ + ε̃.

The white area is the locus of perturbations for which convergence is guaranteed, while the dark area represents inadmissible

perturbations which render either
˜
λ or λ̃ negative. Note that both algorithms are robust to a continuous departure from the true

values of λ and λ, since there is a ball with radius
√

3λ/2 around the origin for which both methods are guaranteed to converge.

Next, we compare the convergence factors of the two methods when the step-sizes are tuned based on inaccurate parameters.

The following Lemma is then useful.

Lemma 3: Let
˜
λ and λ̃ satisfy 0 < λ <

˜
λ + λ̃. The convergence factor of the weighted gradient method (7) with step-size

August 6, 2013 DRAFT

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε̃ ∈ [0, λ]

co
n
v
er
ge
n
ce

fa
ct
or
s
(q̃

G
,q̃
)

κ = 2

κ = 10

κ = 100

(a) Symmetric perturbations in Q4

ε̃ ∈ [0, 2λ]

−
ε
∈
[0
,λ

]
˜

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κ = 2

κ = 10
κ = 100

(b) General perturbation in Q4

Fig. 2. (a) Convergence factor of multi-step and gradient algorithms under the condition described by (19). Solid lines belong to q̃ while the dashed lines
depict q̃G. (b) Level curves of q̃ − q̃G around the origin for (ε˜, ε̃) ∈ Q4.

(15) is given by

q̃G =





2λ/(
˜
λ+ λ̃)− 1 if

˜
λ+ λ̃ ≤ λ+ λ

1− 2λ/(
˜
λ+ λ̃) otherwise,

(17)

while the multi-step weighted gradient method (9) with step-sizes (16) has convergence factor

q̃ = max

{√
β̃, |1 + β̃ − α̃λ| −

√
β̃, |1 + β̃ − α̃λ| −

√
β̃

}
. (18)

The convergence factor expressions derived in Lemma 3 allow us to come to the following conclusions:

Proposition 5: Let
˜
λ = λ+

˜
ε, λ̃ = λ+ ε̃ and define the set of perturbation under which the methods converge

C = {(
˜
ε, ε̃) |

˜
ε ≥ −λ, ε̃ ≥ −λ,

˜
ε+ ε̃ ≥ −λ},

and the fourth quadrant in the perturbation space Q4 = {(
˜
ε, ε̃) |

˜
ε < 0 ∩ ε̃ > 0}. Then, for all (

˜
ε, ε̃) ∈ C\Q4, it holds that

q̃ ≤ q̃G. However, there exists (
˜
ε, ε̃) ∈ Q4 for which the scaled gradient has a smaller convergence factor than the multi-step

variant. In particular, for

(
˜
ε, ε̃) ∈ Q4 and (λ+ ε̃)/(λ+

˜
ε) ≥ (λ/λ)2, (19)

the multi-step iterations (9) converge slower than (7).

Fig. 1(b) illustrates the different perturbations considered in Proposition 5. While the multi-step method has superior con-

vergence factors for many perturbations, the troublesome region Q4 is probably common in engineering applications since it

represents perturbations where the smallest eigenvalue is underestimated while the largest eigenvalue is overestimated. To shed

more light on the convergence properties in this region, we perform a numerical study on a quadratic function with λ = 1

and λ varying from 2 to 100. We first consider symmetric perturbations
˜
ε = −ε̃, in which case the convergence factor of the

gradient method is q̃G = 1− 2/(1 + λ/λ) while the convergence factor of the multi-step method is q̃ = 1− 2/

√
1 + λ̃/

˜
λ. The

convergence factor of the gradient iterations is insensitive to symmetric perturbations, while the performance of the multi-step

iterations degrades with the size of the perturbation and eventually becomes inferior to the gradient; see Fig. 2(a). To complement

August 6, 2013 DRAFT

11

0 100 200 300 400 500

10
−6

10
−4

10
−2

10
0

10
2

k

f(
x
(k
))
−
f*

Xiao−Boyd−Best−Constant

Xiao−Boyd−Metropolis

Xiao−Boyd−SDP−Symmetric

Multi−step−Best−Constant

Multi−step−Metropolis

Multi−step−SDP−Symmetric

Fig. 3. Convergence behavior convergence behavior for weighted and multi-step weighted gradient iterations using randomly generated network and the heuristic
weights. Plot shows f

(
x(k)

)
− f? versus iteration number k.

this study, we also sweep over (
˜
ε, ε̃) ∈ C ∩ Q4 and compute the convergence factors for the two methods for problems with

different λ. Fig. 2(b) indicates that when the condition number λ/λ increases, the area where the gradient method is superior

(the area above the contour line) shrinks. It also shows that when
˜
λ tends to zero or λ̃ is very large, the performance of the

multi-step method is severely degraded.

VII. APPLICATIONS

In this section, we apply the developed techniques to three classes of engineering problems: resource-allocation under

network-wide resource constraints, distributed averaging, and Internet congestion control. In all cases, we demonstrate that

direct applications of our techniques yield algorithms with significantly faster convergence than state-of-the art algorithms that

have been tailor-made to the specific applications.

A. Accelerated resource allocation

Our first application is the distributed resource allocation problem under a network-wide resource constraint [18], [17] discussed

in Example 1. We compare the multi-step method developed in this paper with the optimal and suboptimal tuning for the standard

weighted gradient iterations proposed in [17]. Similarly to [17] we create problem instances by generating random networks

and assigning loss functions on the form fv(xv) = av(xv − cv)2 + log[1 + exp(xv − dv)] to nodes. The parameters av, bv, cv

and dv are drawn uniformly from intervals (0, 2], [−2, 2], [−10, 10] and [−10, 10], respectively. In [17] it was shown that the

second derivatives of these functions are bounded by lv = av and uv = av + b2v/4.

Fig. 3 shows a representative problem instance along with the convergence behavior for weighted and multi-step weighted

gradient iterations under several weight choices. The optimal weights for the weighted gradient method are found by solving a

semi-definite program derived in [17], and by Proposition 3, setting H = I , for the multi-step variant. In addition, we evaluate the

August 6, 2013 DRAFT

12

0 50 100 150 200 250 300

10
−2

10
0

10
2

10
4

k

||
x

(k
)−

x
*
 |
|2

multi−step

shift−register

Nesterov

standard consensus

Fig. 4. Comparison of standard, multi-step, shift-register, and Nesterov consensus algorithms using metropolis wights. Simulation on a dumbbell of 100 nodes:
log scale of objective function ‖x(k)− x?‖22 versus iteration number k. Algorithms start from common initial point x(0).

heuristic weights “best constant” and “metropolis” introduced in [17]. In all cases, we observe significantly improved convergence

factors for the multi-step method.

B. Distributed averaging

Our second application is devoted to the distributed averaging. Distributed algorithms for consensus seeking have been

researched intensively for decades; see e.g. [6], [24], [25]. Here, each node v in the network initially holds a value cv and

coordinates with neighbors in the graph to find the network-wide average. Clearly, this average can be found by applying any

distributed optimization technique to the problem

minimize
x

∑
v∈V

1
2 (x− cv)2, (20)

since the optimal solution to this problem is the network-wide average of the constants cv . In particular, we will explore how the

multi-step technique with our optimal parameter selection rule compares with the state-of-the art distributed averaging algorithms

from the literature.

The basic consensus algorithms use iterations on the form

xv(k + 1) = Qvvxv(k) +
∑

w∈Nv

Qvwxw(k), (21)

where Qvw are scalar weights, and the node states are initialized with xv(0) = cv . The paper [26] provides necessary and

sufficient conditions on the matrix Q = [Qvw] to ensure that the iterations converge to the network-wide average of the initial

values. Specially, it is required that 1>Q = 1>, Q1 = 1, and ρ(Q− (1/n)11>) < 1 where ρ(·) denotes the spectral radius of

a matrix. Although the convergence conditions do not require that Q is symmetric, techniques for minimizing the convergence

factor often assume Q to be symmetric [26], [8].

Following the steps given in Section V, the optimization approach to consensus would suggest the iterations (see [27] for a

August 6, 2013 DRAFT

13

detailed derivation)

x(k + 1) = x(k)− αWx(k), (22)

where W = A>A and A is the incidence matrix of G. These iterations are on the same form as (21) but use a particular weight

matrix. The multi-step counterpart of (22) is

x(k + 1) = ((1 + β)I − αW)x(k)− βx(k − 1). (23)

In a fair comparison between the multi-step iterations (23) and the basic consensus iterations, the weight matrices of the two

approaches should not necessarily be the same, nor necessarily equal to the graph Laplacian. Rather, the weight matrix for the

consensus iterations (21) should be optimized using the results from [26] and the weight matrix for the multi-step iteration

should be computed by using Proposition 3.

In addition to the basic consensus iterations with optimal weights, we will also compare our multi-step iterations with two

alternative acceleration schemes from the literature. The first one comes from the literature on accelerated consensus and uses

shift registers [7], [28], [29]. Similarly to the multi-step method, these techniques use a history of past iterates, stored in local

registers, when computing the next. For the consensus iterations (21), the corresponding shift register iterations are

x(k + 1) = ζQx(k) + (1− ζ)x(k − 1). (24)

The current approaches to consensus based on shift-registers assume that Q is given and design ζ to minimize the convergence

factor of the iterations. The key results can be traced back to Golub and Varga [30] who determined the optimal ζ and the

associated convergence factor to be

ζ? =
2

1 +
√

1− λ2
n−1(Q)

, q?SR =

√√√√√
1−

√
1− λ2

n−1(Q)

1 +
√

1− λ2
n−1(Q)

. (25)

In our comparisons, the shift-register iterations will use the Q-matrix optimized for the basic consensus iterations and the

associated ζ? given above. The second acceleration technique that we will compare with is the order-optimal gradient methods

developed by Nesterov [9]. While these techniques have optimal convergence rate, also in the absence of strong convexity, they

are not guaranteed to obtain the best convergence factors. When the objective function is strongly convex with modulus l and

its gradient is Lipschitz continuous with constant u, the following iterations are proposed in [9]:

x̂(k + 1) = x(k)−∇f(x(k))/u

x(k + 1) = x̂(k + 1) +

√
u−
√
l

√
u+
√
l
(x̂(k + 1)− x̂(k)),

initialized with x̂(0) = x(0). When we apply this technique to the consensus problem, we arrive at the iterations

x(k + 1) = (I − αW) (x(k) + b(x(k)− x(k − 1))) , (26)

with W = AA>, a = λ−1
n (W) and b = (

√
λn(W)−

√
λ2(W))/(

√
λn(W)+

√
λ2(W)), where λ2(·) and λn(·) are the smallest

and largest non-zero eigenvalues of their variables.

Fig. 4 compares the multi-step iterations (23) developed in this paper with (a) the basic consensus iterations (21) using a

August 6, 2013 DRAFT

14

weight matrix determined using the metropolis scheme, (b) the shift-register acceleration (24) with the same weight matrix and

the optimal ζ, and (c) the order-optimal method (26). The particular results shown are for a network of 100 nodes in a dumbbell

topology. The simulations show that all three methods yield a significant improvement in convergence factors over the basic

iterations, and that the multi-step method developed in this paper outperforms the alternatives.

Several remarks are in order. First, since the Hessian of (20) is equal to identity matrix, the speed-up of the multi-step iterations

is proportional to
√
κ =

√
λn(W)/λ2(W). When W equals L, the Laplacian of the underlying graph, we can quantify the

speed-ups for certain classes of graphs using spectral graph theory [31]. For example, the complete graph has λ2(L) = λn(L)

so κ = 1 and there is no real advantage of the multi-step iterations. On the other hand, for a ring network the eigenvalues of L
are given by 1− cos(2πv)/|V|, so κ grows quickly with the number of nodes, and the performance improvements of (23) over

(22) could be substantial.

Our second remark pertains to the shift-register iterations. Since these iterations have the same form as (23), we can go beyond

the current literature on shift-register consensus (which assumes Q to be given and optimizes ζ) and provide jointly optimal

weight matrix and ζ-parameter:

Proposition 6: The weight matrix Q? and constant ζ? that minimizes the convergence factor of the shift-register consensus

iterations (24) are Q? = I − θ?W ?, where W ? is computed in Proposition 3 with H = I and θ? = 2
λ2(W?)+λn(W?) while

ζ? = 1 + β? and β? is given in Theorem 1.

C. Internet congestion control

Our final application is to the area of Internet congestion control, where Network Utility Maximization (NUM) has emerged

as powerful framework for studying various important resource allocation problems, see, e.g., [1], [32], [33], [34]. The vast

majority of the work in this area is based on the dual decomposition approach introduced in [32]. Here, the optimal bandwidth

sharing among S flows in a data network is posed as the optimizer of a convex optimization problem

maximize
x

∑
s us(xs)

subject to xs ∈ [ms,Ms]

Rx ≤ c.

(27)

Here, xs is the communication rate of flow s, and us(xs) is a strictly concave and increasing function that describes the utility that

source s has of communicating at rate xs. The communication rate is subject to upper and lower bounds. Finally, R ∈ {0, 1}L×S

is a routing matrix whose entries R`s are 1 if flow s traverses link ` and are 0 otherwise. In this way, Rx is the total traffic on

links, that cannot exceed the link capacities c ∈ Rn. We make the following assumptions.

Assumption 2: For the problem (27) it holds that

(i) Each us(xs) is twice continuously differentiable and satisfies 0 < l < −∇2us(xs) < u for xs ∈ [ms,Ms]

(ii) For every link `, there exists a source s whose flow only traverses `, i.e. R`s = 1 and R`′s = 0 for all `′ 6= `.

While these assumptions appear restrictive, they are often postulated in the literature (e.g. [32, Assumptions C1-C4]). Note that

under Assumption 2, the routing matrix has full row-rank and all the link constraints hold with equality at optimum. Hence, we

can replace Rx ≤ c in (27) with Rx = c. Following the steps of the dual ascent method in Section V, we have the following

primal-dual iterations

August 6, 2013 DRAFT

15

x?s(µ) = arg max
z∈[ms,Ms]

us(z)− z
∑

`

R`sµ` (28)

µ`(k + 1) = µ`(k) + α

(∑

`

R`sx
?
s(µ(k))− c`

)
. (29)

Note that each source solves a localized minimization problem based on the sum of the Lagrange multipliers for the links that

the flow traverses; this information can be effectively signaled back to the source explicitly or implicitly using the end-to-end

acknowledgements. The Lagrange multipliers, on the other hand, are updated by individual links based on the difference between

the total traffic imposed by the sources and the capacity of link. Clearly, this information is also locally available. It is possible

to show that under the conditions of Assumption 2, the dual function is strongly concave, differentiable and has a Lipschitz-

continuous gradient [32]. Hence, by standard arguments, the updates (28), (29) converge to a primal-dual optimal point (x?, µ?)

for appropriately chosen step-size α. Our results from Section V indicate that substantially improved convergence factors could

be obtained by the following class of multi-step updates of the Lagrange multipliers

µ`(k + 1) = µ`(k) + α

(∑

`

R`sx
?
s(µ(k))− c`

)

+ β(µ`(k)− µ`(k − 1)). (30)

To tune the step-sizes in an optimal way, we bring the techniques from Section V into action. To do so, we first bound the

eigenvalues of RR> using the following result:

Lemma 4: Let R ∈ {0, 1}L×S satisfy Assumption 2. Then

1 ≤ λ1(RR>), λn(RR>) ≤ `maxsmax,

where `max = maxs
∑
`R`s and smax = max`

∑
sR`s.

The optimal step-size parameters and corresponding convergence factor now follow from Lemma 4 and Theorem 2:

Proposition 7: Consider the network utility maximization problem (27) under Assumption 2. Then, for 0 ≤ β < 1 and

0 < α < 2(1 + β)/(u`maxsmax) the iterations (28) and (30) converge linearly to a primal-dual optimal pair. The step-sizes

α =

(
2√

u`maxsmax +
√
l

)2

, β =

(√
u`maxsmax −

√
l√

u`maxsmax +
√
l

)2

,

ensure that the convergence factor of the dual iterates is

qNUM =

√
u`maxsmax −

√
l√

u`maxsmax +
√
l
.

Note that an upper bound of the Hessian of the dual function was also derived in [32]. However, strong concavity was not

explored and the associated bounds were not derived.

To compare the gradient iterations with the multi-step congestion control mechanism, we present representative results from

a network with 10 links and 20 flows which satisfies Assumption 2. The utility functions are on the form −(Ms − xs)2/2 and

ms = 0 and Ms = 105 for all sources. As shown in Fig. 5, substantial speedups are obtained.

August 6, 2013 DRAFT

16

0 200 400 600 800 1000
10

−10

10
−5

10
0

10
5

k

||x
s(µ

(k
))

−
x s* || 22

low−lapsley
multi−step

Fig. 5. Convergence of Low-Lapsley and multi-step. Plot shows log scale of the Euclidian distance from optimal source rates ‖xs(µ(k)) − x?s‖22 vs. the
iteration number k.

As a final remark, note that Lemma 4 underestimates λ1 and overestimates λn, so we have no formal guarantee that the

multi-step method will always outperform the gradient-based algorithm. However, in our experiments with a large number of

randomly generated networks, the disadvantageous situation identified in Section VI never occurred.

VIII. CONCLUSIONS

We have studied accelerated gradient methods for network-constrained optimization problems. In particular, given the bounds

of the Hessian of the objective function and the Laplacian of the underlying communication graph, we derived primal and

dual multi-step techniques that allow improving the convergence factors significantly compared to the standard gradient-based

techniques. We derived optimal parameters and convergence factors, and characterized the robustness of our tuning rules to errors

that occur when critical problem parameters are not known but have to be estimated. Our multi-step techniques were applied to

three classes of problems: distributed resource allocation under a network-wide resource constraint, distributed average consensus,

and Internet congestion control. We demonstrated, both analytically and in numerical simulations, that the approaches developed

in this paper often significantly outperform alternatives from the literature.

APPENDIX
A. Proof of Theorem 1

Let x? be the optimizer of (1). The Taylor series expansion of ∇f
(
x(k)

)
around x? yields

W∇f
(
x(k)

) ∼= W (∇f(x?) +∇2f(x?)(x(k)− x?))

= W∇2f(x?)(x(k)− x?),

since W∇f(x?) = 0 by (4) and (8). Introducing z(k) , [x(k)− x?, x(k − 1)− x?]>, we can thus re-write (9) as

z(k + 1) =


B −βI
I 0




︸ ︷︷ ︸
Γ

z(k) + o(z(k)2), (31)

August 6, 2013 DRAFT

17

where B = (1 + β)I − αWH and H = ∇2f(x?). Now, for non-zero vectors v1 and v2, consider the eigenvalue equation

[
B −βI
I 0

]
 v1

v2


 = λ(Γ)


 v1

v2


 .

Since v1 = λ(Γ)v2, the first row can be re-written as

(
−λ2(Γ)I + λ(Γ)B − βI

)
v2 = 0. (32)

Note that (32) is a polynomial in B and B is in turn a polynomial in WH . Hence, if µ and λ denote the eigenvalues of B and

WH , respectively, we have

λ2(Γ)− (1 + β − αλ)λ(Γ) + β = 0. (33)

The roots of (33) have the form

λ(Γ) =
1 + β − αλ±

√
∆

2
, ∆ = (1 + β − αλ)

2 − 4β. (34)

If ∆ ≥ 0, then |λ(Γ)| < 1 is equivalent to

(1 + β − αλ)
2 − 4β ≥ 0

− 2 < 1 + β − αλ±
√

(1 + β − αλ)2 − 4β < 2,

which, after simplifications, yield 0 < α < 2(1 + β)/λ.

Furthermore, if ∆ < 0, then |λ(Γ)| < 1 is equivalent to

0 ≤ (1 + β − αλ)2 −∆

4
< 1,

which, after similar simplifications, implies that 0 ≤ β < 1.

Note that the upper bound for α gives a necessary condition for λ. Here we find an upper bound for this eigenvalue. Since H

is a positive diagonal matrix, under similarity equivalence we have WH ∼ H1/2WHH−1/2 = H1/2WH1/2. Without loss of

generality assume x ∈ Rn and x>x = 1, Then x>WHx = x>H1/2WH1/2x = y>Wy, where y = H1/2x. Clearly, for y>Wy

it holds that λ1(W)y>y ≤ y>Wy ≤ λn(W)y>y. Now, l ≤ y>y = x>Hx ≤ u, implies lλ1(W) ≤ x>WHx ≤ uλn(W). and

hence, a sufficient condition on α reads

0 < α <
2(1 + β)

uλn(W)
. (35)

Having proven the sufficient conditions for convergence stated in the theorem, we now proceed to estimate the convergence

factor. To this end, we need the following lemmas describing the eigenvalue characteristics of WH and Γ.

Lemma 5: If W has m < n zero eigenvalues, then WH has exactly n − m nonzero eigenvalues, i.e. λ1(WH) = · · · =

λm(WH) = 0, λi(WH) 6= 0 i = m+ 1, · · · , n.
Proof: From [23] we know that if and only if all the principal sub-matrices of a matrix have nonnegative determinants

then that matrix is positive semi-definite. Note that the i-th principal sub-matrix of WH , WHi, is obtained by multiplication

of the corresponding principal sub-matrix of W , Wi by the same principal sub-matrix of H , Hi from the right, and we have

det(WHi) = det(Wi) det(Hi). We know det(Hi) > 0 and det(Wi) ≥ 0 because W ≥ 0, thus det(WHi) ≥ 0 and WH is

August 6, 2013 DRAFT

18

positive semi-definite. Furthermore rank(WH) = rank(W). So rank(WH) = n−m and it means that WH has exactly m zero

eigenvalues.

Lemma 6: For any WH such that λi(WH) = 0 for i = 1, · · · ,m, and λi(WH) 6= 0, for i = m + 1, ..., n., the matrix Γ

has m eigenvalues equal to 1 and the absolute values of the rest of the 2n−m eigenvalues are strictly less than 1.

Proof: For complex λi(Γ) we have |λi(Γ)| = β < 1. For real-valued λi(Γ), on the other hand, the bound on α implies

that α(λ(WH)) is a decreasing function of λ. In this case, 0 < α < 2(1+β)

λ
guarantees that 0 < α < 2(1+β)

λi(WH) for any

0 < λi(WH) ≤ λ. Note that if we set a tighter bound on α, then it does not change satisfactory condition for having

|λ(Γ)| < 1. Only when λi(WH) = 0, we have limx→0 α =∞. For this case, if we substitute λi(WH) = 0 in (33) we obtain

λ2i−1(Γ) = 1 and λ2i(Γ) = β < 1.

We are now ready to prove the remaining parts of Theorem 1. By the Lemmas above, Γ has m < n eigenvalues equal to

1, which correspond to the m zero eigenvalues of W implied by the optimality condition (8). Hence, minimizing m + 1-th

largest eigenvalue of (31) leads to the optimum convergence factor of the multi-step weighted gradient iterations (9). Calculating

λΓ , min
α,β

max
1≤j≤2n−m

|λj(Γ)| yields the optimum α? and β?. Considering that (34) are the eigenvalues of Γ,

λΓ =
1

2
max

{
|1 + β − αλi|+

√
(1 + β − αλi)2 − 4β

}
,

where λi , λi(WH), ∀i = m+ 1, .., n. There are two cases:

Case 1: (1 + β − αλi)2 − 4β ≥ 0. Then, a and b are non-negative and real with a ≥ b. Hence, a2 − b2 ≥ (a − b)2 and

consequently a+
√
a2 − b2 ≥ 2a− b ≥ b.

Case 2: (1+β−αλi)2−4β < 0. In this case, λi(Γ) is complex-valued. Consider c, d ∈ R+ with c < d. Then, |c+
√
c2 − d| =

√
c2 − c2 + d =

√
d ≥ 2c−

√
d.

If we substitute these results into λΓ with a = 1 + β − αλi, b = 2
√
β , c = |1 + β − αλi| and d = 4β we get

λΓ ≥ max
{√

β,max
{
|1 + β − αλi| −

√
β
}}

,

which can be expressed in terms of λ and λ:

λΓ ≥ max
{√

β, |1 + β − αλ| −
√
β, |1 + β − αλ| −

√
β
}
. (36)

It can be verified that

max
{
|1 + β − αλ| − √β, |1 + β − αλ| − √β

}

≥ |1 + β − α′λ| − √β,
(37)

where α′ is such that |1 + β − α′λ| =
∣∣1 + β − α′λ

∣∣, i.e.

α′ =
2(1 + β)

λ+ λ
. (38)

From (36), (37) and (38), we thus obtain

λΓ ≥ max

{√
β, (1 + β)

λ− λ
λ+ λ

−
√
β

}
. (39)

Again, the max-operator can be bounded from below by its value at the point where the arguments are equal. To this end,

August 6, 2013 DRAFT

19

consider β′ which satisfies
√
β′ = (1 + β′)λ−λ

λ+λ
−√β′, that is,

β′ =

(√
λ−√λ√
λ+
√
λ

)2

. (40)

Since max
{√

β, (1 + β)λ−λ
λ+λ
−√β

}
≥ √β′, we can combine this with (39) to conclude that

λΓ ≥
√
β′ =

√
λ−√λ√
λ+
√
λ
. (41)

Our proof is concluded by noting that equality in (41) is attained for the smallest non-zero eigenvalue of Γ and the optimal

step-sizes β? and α? stated in the body of the theorem.

B. Proof of Proposition 1

As shown in the proof of Theorem 1, the eigenvalues of WH are equal to those of H1/2WH1/2. According to [23,

p.225] for matrices W and H1/2WH1/2, there exists a nonnegative real number θk such that λ1(H) ≤ θk ≤ λn(H) and

λk(H1/2WH1/2) = θkλk(W). Letting k = m+ 1 and k = n, yields λ ≥ lλW and λ ≤ uλW . The rest of the proof is similar

to that of Theorem 1 and is omitted for brevity.

C. Proof of Proposition 2

Direct calculations yield q? = (
√
λ − √λ)/(

√
λ +
√
λ) = 1 − 2/((λ/λ)1/2 + 1). Similarly, q̃ = 1 − 2/((λW /λW)1/2 + 1).

Hence, minimizing q? and q̃ are equivalent to minimizing the condition number of WH and W , respectively.

D. Proof of Proposition 3

As shown in the proof of Theorem 1, the eigenvalues of WH are equal to those of Ω , H1/2WH1/2. Thus, combined with

the constraint that W ≥ 0 the problem of minimizing λ/λ is equivalent to minimizing u/l, where u and l are the largest and

the smallest non-zero eigenvalues of Ω. Next we will construct the constraint set of this optimization problem. First, recall that

W should provide the sparsity pattern induced by G, i.e., W ∈MG . Second, W fulfills (8). For the case that W is symmetric,

this constraint can be rewritten in terms of Ω in the form ΩV = H1/2WH1/2V = 0 where V = H−1/2A>. Third constraint

is to bound the remaining n − m eigenvalues of Ω away from zero. Let v ∈ Rn be a column of V , and let v⊥ ∈ Rn be

orthogonal to v. Since Ω ≥ 0 and Ωv = 0 then we have x>Ωx > 0 ∀x ∈ v⊥. This condition is equivalent to P>ΩP > 0,

where P = [p1, p2, ..., pn−m] ∈ Rn×n−m is a matrix of orthonormal vectors spanning the null space of V >. More explicitly,

one can define this subspace by unit vectors satisfying p>i vj = 0, ∀i = 1, . . . , n −m, j = 1, . . . , n, p>i pk = 0, ∀i 6= k. The

optimization problem becomes

minimize u/l

subject to lI ≤ P>ΩP ≤ uI,W ∈MG ,W ≥ 0,ΩV = 0.

Denoting t = u/l and γ = 1/l, this problem can be recast as

minimize t

subject to I ≤ γP>ΩP ≤ tI,W ∈MG ,
W ≥ 0,ΩV = 0, γ > 0.

(42)

August 6, 2013 DRAFT

20

Finally, the constraint on γ in (42) can be omitted. Specifically, consider (W ?, α?, β?) to be the joint-optimal weight and stepsizes

given by (42) and (10), respectively. One can replace any positive scale γW ? in (10) and derive the step-sizes α = α?/γ and

β = β?. It is easy to check that the triple (γW ?, α, β) leads to an identical multi-step iterations (9) as the optimal ones.

E. Proof of Lemma 1

To prove (a) we exploit the equivalence of l-strong convexity of f(·) and 1/l-Lipschitz continuity of ∇f?. Specially according

to [35, Theorem 4.2.1], for nonzero z1, z2 ∈ Rn, Lipschitz continuity of ∇f? implies that

〈∇f?(z1)−∇f?(z2), z1 − z2〉 ≤
1

l
‖z1 − z2‖2.

Now, for −∇d(z) = −A∇f?(−A>z) + b, change the right hand side of the former inequality to have

〈−∇d(z1) +∇d(z2), z1 − z2〉

= 〈∇f?(−A>z1)−∇f?(−A>z2),−A>(z1 − z2)〉.

In light of 1/l-Lipschitzness of ∇f? we get

〈∇f?(−A>z1)−∇f?(−A>z2),−A>(z1 − z2)〉

≤ 1

l
‖ −A>(z1 − z2)‖2 ≤ λn(AA>)

l
‖z1 − z2‖2.

(b) According to [35, Theorem 4.2.2], If ∇f(·) is u-Lipschitz continuous then f? is 1/u-strongly convex, i.e., for non-identical

z1, z2 ∈ Rn we have 〈∇f?(z1)−∇f?(z2), z1 − z2〉 ≥ 1
u‖z1 − z2‖2. One can manipulate above inequality as

〈−∇d(z1) +∇d(z2), z1 − z2〉

= 〈∇f?(−A>z1)−∇f?(−A>z2),−A>(z1 − z2)〉

≥ 1

u
‖ −A>(z1 − z2)‖2 ≥ λ1(AA>)

u
‖z1 − z2‖2.

It is worth noting that here we assume that A is row full rank.

F. Proof of Theorem 2

The result follows from Lemma 1 and Theorem 1 with W = I and noting that (λ1(AA>)/u)I ≤ H ≤ (λn(AA>)/l)I .

G. Proof of Lemma 2

Since f is twice differentiable on [x?, x], we have

∇f
(
x
)

= ∇f(x?) +

∫ 1

0

∇2f(x? + τ(x− x?))(x− x?)dτ

= A>µ? +H(x)(x− x?),

August 6, 2013 DRAFT

21

where we have used the fact that ∇f(x?) = A>µ? and introduced H(x) =
∫ 1

0
∇2f(x? + τ(x− x?))dτ . By virtue of Assump-

tion 1, H(x) is symmetric and nonnegative definite and satisfies lI ≤ H(x) ≤ uI [13] . Hence from (7) and (8)

‖x(k + 1)− x?‖ = ‖x(k)− x? − αW∇f
(
x(k)

)
‖

= ‖x(k)− x? − αW (A>µ? +H(x(k))(x(k)− x?))‖

= ‖(I − αWH(x(k)))(x(k)− x?)‖

≤ ‖I − αWH(x(k))‖‖x(k)− x?‖.

The rest of the proof follows the same steps as [13, Theorem 3]. Essentially for fixed step-size 0 < α < 2/λ, (7) converge

linearly with factor q2 = max{|1− αλ|, |1− αλ|}. The minimum convergence factor q?G = λ−λ
λ+λ

is obtained by minimizing qG

over α, which yields the optimal step-size α? = 2
λ+λ

.

H. Proof of Proposition 4

According to Lemma 2, the weighted gradient iterations (7) with estimated step-size α̃ = 2/(
˜
λ + λ̃) will converge provided

that 0 < α̃ < 2/λ, i.e. when λ <
˜
λ+ λ̃. For the multi-step algorithm (9), Theorem 1 guarantees convergence if 0 ≤ β̃ < 1, 0 <

α̃ < 2(1 + β̃)/λ. The assumption 0 <
˜
λ ≤ λ̃ implies that the condition on β̃ is always satisfied. Regarding α̃, inserting the

expression for β̃ in the upper bound for α̃ and simplifying yields

4
(√
˜
λ+

√
λ̃
)2 < 2

2(λ̃+
˜
λ)

(√
λ̃+
√
˜
λ
)2

1

λ
,

which is satisfied if 0 < λ < λ̃+
˜
λ. The statement is proven.

I. Proof of Lemma 3

We consider two cases. First, when
˜
λ+ λ̃ < λ+ λ combined with the assumption that 0 < λ <

˜
λ+ λ̃ yields α̃λ > 1, which

means that |1−α̃λ| = α̃λ−1. Moreover, α̃λ−1 ≥ 1−α̃λ, so by Lemma 2 q̃G = max{α̃λ− 1,max{1− α̃λ, α̃λ− 1}} = α̃λ− 1

= 2λ/(
˜
λ+ λ̃)− 1.

The second case is when
˜
λ+ λ̃ > λ+ λ. Then, α̃λ < 1 and hence |1− α̃λ| = 1− α̃λ. Moreover, 1− α̃λ ≥ α̃λ− 1, so

q̃G = max{1− α̃λ,max{α̃λ− 1, 1− α̃λ}} = 1− α̃λ.

The convergence factor of the multi-step iterations with inaccurate step-sizes (16) follows directly from Theorem 1.

J. Proof of Proposition 5

We analyze the four quadrants Q1 through Q4 in order.

Q1 : when (
˜
ε, ε̃) ∈ Q1 we have

˜
λ > λ and λ̃ > λ > λ. From the convergence factor of multi-step gradient method (18) it then

follows that q̃ = 1 + β̃ − α̃λ− β̃1/2. Moreover, since in this quadrant λ̃+
˜
λ ≥ λ+λ, from (17) we have q̃G = 1−2λ/(

˜
λ+λ̃).

A direct comparison between the two expressions yields that q̃ ≤ q̃G.

Q2 : when (
˜
ε, ε̃) ∈ Q2 we have λ <

˜
λ and λ̃ < λ. Combined with the stability assumption

˜
λ + λ̃ > λ, straightforward

calculations show that the convergence factor of the multi-step iterations with inaccurate step-sizes (16) is

q̃ =





α̃λ− β̃ − 1−
√
β̃ λ̃+ λ̃ ≤ λ+ λ,

1 + β̃ − α̃λ−
√
β̃ otherwise,

August 6, 2013 DRAFT

22

Moreover, for this quadrant the convergence factor of weighted gradient method is given by (17). To verify that q̃ < q̃G

we perform the following comparisons:

(a) If
˜
λ+ λ̃ < λ+λ then we have q̃ = α̃λ− β̃− 1− β̃1/2 and q̃G = (2λ)/(

˜
λ+ λ̃)− 1. To show that q̃ < q̃G we rearrange

it to obtain the following inequality

∆ , (λ− λ̃+ λ̃1/2

˜
λ1/2)(λ̃+

˜
λ)− 2λλ̃1/2

˜
λ1/2 < 0.

After simplifications

∆ = (λ̃1/2 −
˜
λ1/2)

(
−λ̃1/2(λ̃+

˜
λ− λ)−

˜
λ1/2λ

)
< 0.

Note that the negativity of above quantity comes from the stability condition, λ̃+
˜
λ > λ.

(b) If
˜
λ + λ̃ > λ + λ then we have q̃ = 1 + β̃ − α̃λ − (β̃)1/2 and q̃G = 1 − (2λ)/(

˜
λ + λ̃). After some simplifications,

we see that q̃ < q̃G boils down to the inequality −(
˜
λ + λ̃)

˜
λ1/2λ̃1/2 + 2λ

˜
λ1/2λ̃1/2 − λ(

˜
λ + λ̃) < 0 or equivalently

−(
˜
λ+ λ̃− 2λ)

˜
λ1/2λ̃1/2 − λ(

˜
λ+ λ̃) < 0 which holds by noting that

˜
λ+ λ̃ > λ+ λ > 2λ.

(c) for the case
˜
λ+λ̃ = λ+λ, we have q̃ = 1+β̃−α̃λ−(β̃)1/2 and q̃G = (λ−λ)/(λ+λ) which coincides with the optimal

convergence factor of unperturbed gradient method. After some rearrangements we notice that q̃ < q̃G reduces to checking

that (λ̃1/2−
˜
λ1/2)(λ−λ) < (

˜
λ1/2 + λ̃1/2)(

˜
λ+ λ̃) that holds since λ̃1/2−

˜
λ1/2 <

˜
λ1/2 + λ̃1/2 and λ−λ < λ+λ =

˜
λ+ λ̃.

Q3 : if (
˜
ε, ε̃) ∈ Q3 we have 0 <

˜
λ < λ and λ̃ < λ. Combined with the stability assumption λ̃+

˜
λ > λ, one can verify that the

convergence factors of the two perturbed iterations are q̃G = (2λ)/(
˜
λ+ λ̃)− 1 and q̃ = α̃λ− β̃− 1− (β̃)1/2, respectively.

The fact that q̃ < q̃G was proven in step (a) of the analysis of Q2.

Q4 : if (
˜
ε, ε̃) ∈ Q4 then, (18) implies that q̃ = β̃1/2. On the other hand, for this region (17) yields q̃G = (λ− λ)/(λ+ λ). To

conclude, we need to verify that there exists λ̃ and
˜
λ such that q̃ > q̃G, i.e. (λ̃1/2−

˜
λ1/2)/(λ̃1/2 +

˜
λ1/2) > (λ−λ)/(λ+λ).

We do so by multiplying both sides with (λ + λ)(λ̃1/2 +
˜
λ1/2) and simplifying to find that the inequality holds if

λλ̃1/2 > λ
˜
λ1/2, or equivalently λ̃/

˜
λ > λ

2
/λ2. The statement is proven.

K. Proof of Proposition 6

The iterations (23) and (24) are equivalent when

(1− ζ) = −β, (1 + β)I − αW = ζQ.

The first condition implies that ζ? = (1 + β?). Combining this expression with the second condition, we find

Q? = I − α?

1 + β?
W ? = I − 2

λ+ λ
W ?.

Noting that for the consensus case, λ = λ2(W ?) and λ = λn(W ?) concludes the proof.

L. Proof of Lemma 4

For the upper bound on λn(RR>), we use a similar approach as [32, Lemma 3]. Specially, from [23, p.313],

λ2
n(RR>) = ‖RR>‖22 ≤ ‖RR>‖∞‖RR>‖1 = ‖RR>‖2∞.

August 6, 2013 DRAFT

23

Hence,

λn(RR>) = max
`

∑

`′

[RR>]``′ = max
`

∑

`′

∑

s

R`sR`′s

≤ max
`

∑

s

R`s`max ≤ smax`max.

To find a lower bound on λ1(RR>) we consider the definition λ1(RR>) = min
‖x‖2=1

‖R>x‖22. We have

[R>x]s =

L∑

`=1

R>s`x` =

L∑

`=1

R`sx`.

According to Assumption 2, R> has L independent rows that have only one non-zero (equal to 1) component. Hence,

‖R>x‖22 =

L∑

s=1

x2
s +

S∑

s=S−L+1

(
L∑

`=1

R`sx`

)2

= 1 +

n∑

s=S−L+1

(
L∑

`=1

R`sx`

)2

≥ 1,

where the last equality is due to ‖x‖2 = 1.
REFERENCES

[1] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: shadow prices, proportional fairness and stability,” Journal of the Operational
Research Society, vol. 49, pp. 237–252, 1998.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95 Issue: 1,
pp. 215–233, 2007.

[3] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication,”
IEEE Trans. on Information Theory, 2012.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3 Issue: 1, pp. 1–122, 2011.

[5] D. Goodman and N. Mandayam, “Power control for wireless data,” Personal Communications, IEEE, vol. 7 Issue:2, pp. 48–54, 2000.
[6] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and stochastic gradient optimization algorithms,” Automatic Control,

IEEE Transactions on, vol. 31 Issue: 9, pp. 803–812, 1986.
[7] M. Cao, D. A. Spielman, and E. M. Yeh, “Accelerated gossip algorithms for distributed computation,” in 44th Annual Allerton Conference on Communication,

Control, and Computation, 2006, pp. 952–959.
[8] B. Johansson, “On distributed optimization in networked systems,” Ph.D. dissertation, Royal Institute of Technology, 2008.
[9] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course. Springer, 2004.

[10] D. Bertsekas., Nonlinear Programming. Athena Scientific, 1999.
[11] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato, “Newton-raphson consensus for distributed convex optimization,” in IEEE Conference

on Decision and Control (CDC), 2011.
[12] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed newton method for network utility maximization, i: Algorithm,” LIDS report 2832, 2011.
[13] B. Polyak, Introduction to Optimization. ISBN 0-911575-14-6, 1987.
[14] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decomposition methods,” Stanford University, Tech. Rep., 2008.
[15] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathematical Programming, 2005.
[16] O. Devolder, F. Glineur, and Y. Nesterov, “A double smoothing technique for constrained convex optimization problems and applications to optimal control,”

submitted to SIAM Journal on Optimization, 2011.
[17] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for distributed resource allocation,” J. Opt. Theory and Applications, vol. 129 Issue:3, pp.

469–488, 2006.
[18] Y. C. Ho, L. Servi, and R. Suri, “A class of center-free resource allocation algorithms,” Large Scale Systems, vol. 1, pp. 51–62, 1980.
[19] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:Numerical Methods. New York: Athena Scientific, 1997.
[20] P. Maréchal and J. Ye, “Optimizing condition numbers,” SIAM Journal on Optimization, vol. 20, no. 2, pp. 935–947, 2009.
[21] Z. Lu and T. K. Pong, “Minimizing condition number via convex programming,” SIAM J. Matrix Anal. Appl., vol. 32, pp. 1193–1211, 2011.
[22] L. Vandenberghe, “Course notes for optimization methods for large-scale systems, ee236c, dual decomposition chapter,” 2012.
[23] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, 1985.
[24] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” Automatic Control, IEEE

Transactions on, vol. 48, pp. 988 – 1001, 2003.
[25] B. Oreshkin, M. Coates, and M. Rabbat, “Optimization and analysis of distributed averaging with short node memory,” Signal Processing, IEEE Transactions

on, vol. 58 Issue: 5, pp. 2850 –2865, 2010.
[26] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems and Control Letters, vol. 53 Issue: 1, pp. 65–78, 2004.
[27] E. Ghadimi, M. Johansson, and I. Shames, “Accelerated gradient methods for networked optimization,” in American Control Conference (ACC), 2011.

IEEE, 2011, pp. 1668–1673.
[28] D. M. Young, “Second-degree iterative methods for the solution of large linear systems,” Journal of Approximation Theory, 1972.
[29] J. Liu, B. D. O. Anderson, M. Cao, and A. S. Morse, “Analysis of accelerated gossip algorithms,” in 48th IEEE Conference on Decision and Control

(CDC), 2009.
[30] G. H. Golub and R. S. Varga, “Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order richardson iterative

methods,” Numerische Matematik, vol. 3, pp. 147–156, 1961.
[31] F. R. K. Chung, Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, No. 92, American Mathematical Society, 1997.
[32] S. Low and D. Lapsley, “Optimization flow control - i: Basic algorithm and convergence.” IEEE/ACM Transactions on Networking, vol. 7 Issue: 6, pp.

861–874, 1999.
[33] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and resource allocation via dual decomposition,” IEEE Transactions on Communications, vol.

52 Issue: 7, pp. 1136–1144, 2004.
[34] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as optimization decomposition: A mathematical theory of network architectures,” Proceedings

of the IEEE, vol. 95 Issue:1, pp. 255 – 312, 2007.
[35] J. B. H. Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II. Springer, 1996.

August 6, 2013 DRAFT

