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Abstract Nowadays, safety of road vehicles is an im-
portant issue due to the increasing road vehicle acci-
dents. Passive safety system of the passenger vehicle
is to minimize the damage to the driver and passen-
ger of a road vehicle during an accident. Whereas an
active steering system is to improve the response of
the vehicle to the driver inputs even in adverse situa-
tions and thus avoid accidents. This paper presents a
neural network-based robust control system design for
the active steering system. Primarily, double-pinion
steering system used modeling of the active steering
system. Then four control structures are used to con-
trol prescribed random trajectories of the active steer-
ing system. These control structures are as classical
PID Controller, Model-Based Neural Network Con-
troller, Neural Network Predictive Controller and Ro-
bust Neural Network Predictive Control System. The
results of the simulation showed that the proposed
neural network-based robust control system had supe-
rior performance in adapting to large random distur-
bances.
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1 Introduction

The active steering system plays a significant role in
improving vehicle handling and stability. Several pa-
pers, a few of which are presented below, have been
published in the area of the vehicle steering control
system, vehicle stability and some of these papers are
given below.

Zheng and Anwar researched a yaw stability con-
trol algorithm with active front wheel steering con-
trol of a vehicle [1]. The yaw stability control al-
gorithm was obtained the decoupling of the lateral
and yaw motion of a vehicle and the vehicle’s yaw
damping simultaneously by the feedback of both yaw
rate and front steering angle. Also, the control sys-
tem was applied on a steer-by-wire vehicle, and the
benefits of the system were illustrated experimentally.
A model of active steering approach for trajectory
generation of unmanned ground vehicles were devel-
oped by Yoon et al. [2]. An optimal tracking problem
was presented in the way of cost minimization un-
der constraints. Simulation results show that the mod-
ified parallax method reflected the threat of the obsta-
cles to the vehicle considering the dimension and state
variables of the vehicle. An integrated control strat-
egy presented for optimum coordination of individual
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brakes and front/rear steering subsystems [3]. A low-
level slip-ratio controller has been designed to gener-
ate the desired longitudinal forces at small longitudi-
nal slip-ratios, while averting wheel locking at large
slip-ratios. The efficiency of the suggested approach
was demonstrated through computer simulations.

Feedback linearization scheme for the control of
vehicle’s lateral dynamics was applied by Liaw and
Chung [4]. Feedback linearization scheme was em-
ployed to construct the stabilizing control laws for the
nominal model. The stability of the overall vehicle dy-
namics at the saddle node bifurcation was then guar-
anteed by applying the Lyapunov stability criterion.
Since the remaining term of the vehicle dynamics con-
tains the steering control input, which might change
system equilibrium except the designed one. Paramet-
ric analysis of system equilibrium for an example ve-
hicle model was also obtained to classify the regime
of control gains for potential behavior of vehicle’s dy-
namical behavior. A comparative study of different lat-
eral controllers applied to the autonomous steering of
automobiles was presented by Sotelo et al. [5]. The
nonlinear nature of vehicle dynamics makes it a chal-
lenging problem in the intelligent transportation sys-
tems field, as long as a stable, accurate controller was
compulsorily needed in order to ensure safety dur-
ing navigation. The problem has been tackled under
two different approaches. The first one was based on
chained systems theory, while the second controller re-
lied on fuzzy logic. A comparative analysis has been
carried out based on the results achieved in practical
trials.

A kinematics model of planetary gear set and steer-
ing gear with active front steering system was installed
by Gao and Wang [6]. Also, a controller of variable
steering ratio for active front steering system was de-
signed, and virtual road tests was made in CarMaker
driver vehicle-road simulation environment. The re-
sults of simulation tests validated the controller per-
formance and the advantage of variable steering ratio
function. In addition, driving comfort was improved
at low speed especially due to the active front steer-
ing system. Chu et al. [7] proposed coordinated con-
trol system to improve vehicle handling and stability
by coordinating control of electronic stability program
and active front steering. Primarily, they calculated the
target yawing moment required to keep the vehicle sta-
ble according to PID control of the yaw-rate. After-
wards, they proposed a fuzzy method to control elec-

tronic stability program and active front steering. Fi-
nally, they used genetic algorithm to optimize the con-
trol rule to ensure the correctness and accuracy of the
control rule. The performance of the integrated con-
trol system was evaluated by computer simulations at
two different running condition and they compared the
performance of the integrated system.

Fault detection of a steering wheel sensor signal
in an active front steering system was researched by
Malinen et al. [8]. A kinematics constraint, mod-
eled as a dynamic system, was used to estimate the
steering wheel angle. This estimated signal was com-
pared with the measured signal. Using change detec-
tion algorithms typical failure patterns of the steer-
ing wheel sensor were detected quite easily. The es-
timated results and measurements from a prototype
vehicle have been presented in this study. Escalona
and Chamorro [9] researched a method for the stabil-
ity analysis of the steady curving of vehicles based on
equations of motion that were obtained using multi
body dynamics. Owing to this method, steady cir-
cular motions could be described in terms of equi-
librium points rather than periodic motions. Stability
analyses were thus made much simpler and compu-
tationally efficient. Also, the method was applied to
a simple wheeled mechanism. The numerical results
thus obtained were consistent with those of analytical
and classical theories, which testify to the accuracy of
the proposed method. Jinlia et al. [10] proposed inter-
nal model control based on combined brake and front
wheel active steering for vehicle stability control and
compared with the four wheel steering internal model
control.

Discrete neural control for flight path angle and ve-
locity of a generic hypersonic flight vehicle was in-
vestigated by Xu et al. [11]. Primarily, strict-feedback
form was set up for the attitude subsystem consider-
ing flight path angle, pitch angle, and pitch rate by
altitude-flight path angle transformation. Secondly, the
direct neural network control was proposed for at-
titude subsystem via back-stepping scheme. The di-
rect design was employed for system uncertainty ap-
proximation with less online tuned neural network
parameters and there was no need to know the in-
formation of the upper bound of control gain dur-
ing the controller design. Similar neural network
control was applied on velocity subsystem. Finally,
the feasibility of the proposed controller was veri-
fied by a simulation example. A simple new method
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Fig. 1 Schematic
representation of the
double-pinion steering
system [20]

for dynamics of chaotic time continuous systems is
proposed by Perc [12]. Determining the flexibility
of regular and chaotic attractors is researched by
Marhl and Perc [13]. They deploy a systematic ap-
proach, first introducing the simplest measure given
by the local divergence of the system along the at-
tractor, and then develop more rigorous mathemati-
cal tools for estimating the flexibility of the system’s
dynamics. A new method for controlling unstable
periodic orbits is presented [14]. The effectiveness
of the proposed method is shown on two differ-
ent chaotic systems. Also, the chaotic behavior of a
driven resonant circuit is researched [15] and their
study used basic nonlinear time series analysis meth-
ods.

This paper is organized as follows: In Sect. 2, ve-
hicle dynamic and kinematics model is presented. Our
proposed control system is given in Sect. 3, and simu-
lation results are presented in Sect. 4. Finally, conclu-
sions are given Sect. 5.

2 Model of active steering system

The model of active steering system is composed of a
double pinion rack mechanism, the primary mechani-
cal steering system and an electric actuator motor ad-
ditionally. Also, the electric actuator is connected to
a different pinion gear with the steering rack [16], as
illustrated in Fig. 1. The dynamics equations of the

model are given by

Jcθ̈c + Bcθ̇c + Kc

(
θc − Xr

rp

)
= Td (1)

Jmθ̈m + Bmθ̇m + Km

(
θm − XrG

rp

)
= Tm (2)

MrẌr + BrẊr + KrXr

= Kc

rp

(
θc − Xr

rp

)
+ KmG

rp

(
θm − XrG

rp

)
+ Ft (3)

where Jc and Jm represent the inertia moment of steer-
ing column and electric actuator, respectively. Bc, Bm

and Br represent the damping coefficient of steering
column, electric actuator and steering rack. Kc , Km

and Kt denote the spring coefficient of steering col-
umn, electric actuator and tie/rack, respectively. θm

and θc represent the angle of electric actuator and
steering column, respectively. rp is the rack radius, Td

is the driver torque, Tm is the torque of electric actu-
ator, Mr is the rack mass, Xr is the displacement of
rack, Ft is the lateral force from road and G is the mo-
tor gear ratio. The differential equations can be writ-
ten in state-space notation when the state vector x is
defined as

ẋ = Ax + BU (4)

y = Cx + DU (5)

where y is the output vector, U is the input vector, A is
the state matrix, B is the input matrix, C is the output
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matrix, D is the feed forward matrix. We have

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−Kc

Jc

−Bc

Jc

Kc

Jcrp
0 0 0

0 0 0 1 0 0
Kc

Mrrp
0 −(Kc+KmG2

Mrr2
p

+ Kt

Mr
) −Br

Mr

KmG
Mrrp

0

0 0 0 0 0 1

0 0 KmG
Jmrp

0 −Km

Jm

−Bm

Jm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1
Jc

0

0 0

0 0

0 0

0 1
Jm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

C =
[
0 −Km

−KmG
rp

0 Km 0
]
,

D = [
0 0

] (8)

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θc

θ̇c

θm

θ̇m

xr

ẋr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y = Km

(
θm − XrG

rp

)
= Ta (9)

U =
[

Td

u

]
(10)

The geometric parameters of the active steering sys-
tem are given in Table 1.

3 Control structures

In this study, four different control structures are used
to control the active steering system. These control
structures are as PID Controller, Model-Based Neural
Network Controller, Neural Network Predictive Con-
troller and Robust Neural Network Predictive Control
System. Also, these control structures are given in sub
sections.

3.1 Model Based Neural Network Controller
(MBNNC)

MBNNC structure uses two neural networks: a con-
troller network and a plant model network, as shown in
Fig. 2. The plant model network is a multi-layer neu-
ral network with a back-propagation learning scheme.
The controller is a recurrent learning multi-layer neu-
ral network with “Plant Information” feedback along
with other required feedback. The purpose of this con-
troller is to provide the appropriate control action,
given the current state of the system, in order to ob-
tain a new state of the system such that the succes-
sive application of the control law drives the system
toward a desired final state without violating the con-
straints imposed on the system and on the control vari-
ables.

Identification of the plant can be achieved by ob-
serving the input-output behavior of the plant. The
plant model is used to generate the model error. Then
the controller network is trained in such a way that
the system response tracks the desired response (input
to the model). Each of these networks has two layers
with delayed inputs and outputs. The number of de-
lays is proportional to the order of the system. The
more the complexity of the system, the higher num-
ber of delays required. There is also flexibility so as to
choose the number of hidden layers for each of these

Table 1 Active steering
system parameters Parameters Value Parameters Value

Bc 0.0225 N m s/rad Jm 4.52 × 10−4 kg m2

Br 3920 N m s/rad Kc 172 N m/rad

Bm 3.34 × 10−3 N m s/rad Km 125 N m/rad

G 0.4686 Kt 23900 N m/rad

Jc 0.04 kg m2 Mr 32 kg

rp 0.0071 m
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Fig. 2 Model-based neural
network controller

networks [17]. The MBNNC was designed to control
the active steering system. It consisted of a third-order
linear reference model and a neural network. The pro-
posed neural controllers’ law for active steering sys-
tem is given by

FN(t)

=
5∑

j=1

((
2

(1+ e
−2[∑5

j=1[θa(t)w1j (t)+θc(t)w2j (t)]+1]
)−1

)

× wj1(t) + 1

)
(11)

where FN(t) is the force of the NN controller, θa(t) is
the desired angle input of the steering system for neu-
ral controller. w1j (t) is the weight matrices between
first input layer neuron and in the hidden layer neu-
rons. w2j (t) is the weight matrices between second
input layer neuron and in the hidden layer neurons.
θc(t) is the actual angle input of the steering system
for neural controller.

3.2 Neural network predictive controller (NNPC)

There are typically two steps involved NNPC: system
identification and control design. The system identifi-
cation stage of NNPC is to train a neural network to
present the forward dynamics of the plant. Figure 3
shows a schematic representation of the three layered
feed forward neural network plant model. The predic-
tion error between the plant output and the neural net-
work output is used as the neural network training sig-
nal. The process is represented by Fig. 3. The neural

network plant model uses previous plant inputs and
previous plant outputs to predict future values of the
plant output [18]. In the control stage, the plant model
is used by the controller to predict future performance.
The neural network model predicts the plant response.
We have

FN(t) =
5∑

j=1

f
(
θa(t + j) − θn(t + j)

)2

+ρ

2∑
j=1

g
(
F ′

N(t + j − 1) − F ′
N(t + j − 2)

)2

(12)

where f and g are activation functions of the hid-
den layer and the output layer, respectively, as fol-
lows:

f (t) = tan sig(t) = 2

(1 + e−2t )
− 1, g(t) = t

The F ′
N(t) variable is the tentative control signal,

θa(t) is the desired output, θn(t) is the neural network
model output. The ρ value determines the contribution
that the sum of the squares of the control increments
provides for the performance index. The optimization
block determines the control input that optimizes plant
performance over a finite time horizon.

3.3 Robust neural feedback control system (RNFCS)

A designed control system is employed to control the
active steering system. The purpose of this proposed
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Fig. 3 Neural network
predictive controller

control system is to provide the appropriate control ac-
tion. The mathematical expression of the force of the
RNF control system is given by

F(t) =
5∑

j=1

f
(
θa(t + j) − θn(t + j)

)2

+ ρ

2∑
j=1

g
(
F ′

N(t + j − 1) − F ′
N(t + j − 2)

)2

+ σe−βt (13)

where σ and β are the robust controller parame-
ters and are empirically set to σ = 100 and β =
0.0001. Schematic representation the proposed neural
based control system model is shown in Fig. 4. The
Levenberg–Marquardt algorithm is used to adjust the
weights of neural network.

3.4 Resilient backpropagation algorithm (RPROP)

The Resilient Backpropagation algorithm is a lo-
cal adaptive learning scheme, performing supervised
batch learning in feed-forward neural networks [19].

The basic principle of this algorithm is to eliminate the
harmful influence of the size of the partial derivative’s
size on the weight step. As a consequence, only the
sign of the derivative is considered to indicate the di-
rection of the weight update. This algorithm typically
uses a sigmoid function in the hidden layer and a lin-
ear function in the output layer. Here, wij is the weight
matrice, �ij (t) is the update value for each weight. A
second learning rule is introduced which determines
the evolution of the update value �ij (t). This estima-
tion is based on the observed behavior of the partial
derivative during two successive weight-steps:

�ij (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ+�ij (t − 1), if ∂E
∂wij

(t) ∂E
∂wij

(t − 1) > 0

λ−�ij (t − 1), if ∂E
∂wij

(t) ∂E
∂wij

(t − 1) < 0

�ij (t − 1), else

(14)

where

0 < λ− < 1 < λ+. (15)
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Fig. 4 Robust neural
network predictive control
system

The adaptation rule works in the following way.
Every time the partial derivative of the corresponding
weight wij changes its sign, which indicates that the
last update was too big and the algorithm has jumped
over a local minimum, the update value �ij (t) is de-
creased by the factor λ−. If the derivative retains its
sign, the update value is slightly increased in order to
accelerate convergence in shallow regions. Once the
update value for each weight is adapted, the weight-
update itself follows a very simple rule: if the deriva-
tive is positive (increasing error), the weight is de-
creased by its update-value, if the derivative is nega-
tive, the update value is added:

�wij (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�ij (t), if ∂E
∂wij

(t) > 0

�ij (t), if ∂E
∂wij

(t) < 0

0, else

(16)

wij (t + 1) = wij (t) + �wij (t) (17)

However, there is one exception. If the partial
derivative changes sign, i.e. the previous step is too
large and the minimum is missed, the previous weight-
update is reverted:

�wij (t) = −�wij (t − 1),

if
∂E

∂wij

(t)
∂E

∂wij

(t − 1) < 0 (18)

Due to that ‘backtracking’ weight-step, the deriva-
tive is supposed to change its sign once again in the
following step. In order to avoid a double punishment
of the updatevalue, there should be no adaptation of
the update-value in the succeeding step. In practice
this can be done by setting ∂E

∂wij
(t − 1) = 0 in the �ij

update rule above. The partial derivative of the total
error is given by

∂E

∂wij

(t) = 1

2

P∑
p=1

∂Ep

∂wij

(t) (19)

Hence, the partial derivatives of the errors must be
accumulated for all P training patterns. This means
that the weights are updated only after the presenta-
tion of all training patterns. α (weight-decay) param-
eter determines the relationship of two goals, namely
to reduce the output error (the standard goal) and to
reduce the size of weights (to improve generalization).
The composite error function is

E = 1

2

P∑
p=1

NO∑
j=1

(dpj − epj )
2 + 1

10α

∑
i,j

w2
ij (20)

Moreover, for comparison purposes, the classical
PID controller was used for trajectory control active
steering system. The PID controller was initially tuned
using the Ziegler-Nichols method, and the PID param-
eters are KP = 60, KI = 7200 and KD = 1.
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4 Simulation results

This section presents simulation result of the active
steering system for random input signals using the PID
controller, the MBNNC, the NNPC and the RNNPC
approaches. The first structure used in the control of
active steering system is the PID controller. The simu-
lation results and the values of error obtained from the
random input signal of this organ have been presented
in Fig. 5. As is seen in the figure, the PID controller
is unable to adapt itself to random input signal, which
changes suddenly, but it can follow the input signal
after a certain period. In this case the PID controller,
as such it is, is hardly adequate to run active steering
system (Figs. 5b and 5d).

The second structure employed to control the sys-
tem, however, is the MBNNC approach. The study of
Figs. 6a–6d will reveal that the values of error at the
points of sudden change resulting from the character-
istic reference input signal is higher than that in the
PID controller. In addition, the MBNNCA structure
has yielded the poorest results among the other neu-
ral network structure employed in the control of the
active steering system. The reason for this is that the
reference model error used in the MBNNCA approach
is high and that the learning algorithm used in arrang-
ing the weights of the control structure to reduce this
error has remained inadequate.

The third structure employed in simulation is the
NNPC structure. The results and error values for two

Fig. 5 Variations of the steering column angle using the PID Controller. (a) Random1 input signal. (b) Error of the PID Controller.
(c) Random2 input signal. (d) Error of the PID Controller
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Fig. 6 Variations of the steering column angle using the MBNN Controller. (a) Random1 input signal. (b) Error of the MBNN
Controller. (c) Random2 input signal. (d) Error of the MBNN Controller

different random input signals have been presented in
Fig. 7. The analysis of the graphics has revealed that
the NNPC approach has yielded far more favorable re-
sults compared to other three controllers. The NNPC
approach adapts itself to sudden changes of random
input signal far more favorably and it has been ob-
served that there have been considerable reductions in
steady state errors. The reason for this superior perfor-
mance is that the neural network model uses optimiza-
tion algorithm while being constituted. The difference
between the output signal of neural network model and
active steering system, i.e. error is used for the adjust-
ment of the parameters of optimization algorithm.

In addition, the values of error between the output
signal of neural network model and the output signal

of the controlled system in the system identification
section of this controller are used for the adjustment
of the weights in the learning algorithm of the NNPC.
Therefore, the current NNPC approach to the control
of active steering system is more appropriate than, but
inadequate compared to, other control structures. For
this reason, a controller with a robust constitution ca-
pable of both being adapted to sudden changes of the
random input signal and of eliminating the steady state
errors constantly has been added to the NNPC struc-
ture to constitute the neural network-based robust con-
trol system.

The response of developed RNNP to random in-
put signal and its error values have been given in
Fig. 8. The values of error at sudden change points for
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Fig. 7 Variations of the steering column angle using the NNP Controller. (a) Random1 input signal. (b) Error of the NNP Controller.
(c) Random2 input signal. (d) Error of the NNP Controller

two different random input signals are considerably
low as compared to those for the other three control
structures. Moreover, the system does not have steady
state errors. Since the robust structure of the proposed
control system constantly reduces the errors exponen-
tially, it has yielded more favorable results in a short
time than the controllers. For all these reasons, the sug-
gested neural network-based robust control system is
the most appropriate approach for the control of active
steering system.

5 Conclusions

In this study, the control of the active steering system is
used in four different control structures. Except for the

classical PID controller, neural network is based on all
the other control structures. The reason for preferring
the neural network approach for controlling the sys-
tem is its ability to learn, their high-speed performance
owing to their parallel structures, their non-linearity,
and their ability to generalize. Moreover, for compari-
son purposes, the classical PID controller was used for
random trajectory control active steering system. It has
been observed that the PID controller is not suitable
for the control of such systems since it cannot adapt
itself to sudden changes in random input signals be-
cause of their control parameters being constant. Also,
in the current study, in order to test performance of the
controllers, two different random signals are used as
input signal. Within used neural network-based con-
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Fig. 8 Variations of the steering column angle using the RNNP Control System. (a) Random1 input signal. (b) Error of the RNNP
Control System. (c) Random2 input signal. (d) Error of the RNNP Control System

troller, the NNPC approach has given the best result.
So, this neural network structure is used for the pro-
posed robust control system. From the evaluation of
the obtained simulation results, the proposed neural
based control system is suitable for the control of such
systems. In addition, the developed neural based ro-
bust control system, which can be applied to any vehi-
cle system, will contribute to the research in this field
in automotive manufacturing sector.
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