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ABSTRACT;  In this paper, we have tried to control the nonlinear inverted pendulum-cart dynamic system 

by the use of Proportional-Integral-Derivative (PID) controller. 

We know that the inverted pendulum-cart dynamic system is an inherently unstable and nonlinear system 

when we want to use PID controller for it, we should change the system to a linear system, then we can apply 

a PID controller on it, to this end we will use Linear Quadratic Regulator (LQR). LQR is an optimal control 

technique. Duration the paper simulation results are presented to verify the effectiveness of the proposed 

control. 
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INTRODUCTION The control of the inverted pendulum and, which was 

The control of the inverted pendulum and, which was 

proposed in [1], has been studied by many authors, [2, 3, 4] 

and it is a common example in Control Theory. The main 

characteristics that make it an interesting case of study are 

that it is a strongly nonlinear, unstable, non minimum-

phase, which affects stability margins and robustness, and 

under actuated system (there is only one actuator for more 

degrees of freedom) and, therefore, a difficult and complex 

system to be controlled that has been used as a benchmark 

to compare different control strategies. Nearly all works on 

pendulum control concentrate on two problems: pendulums 

swing up control design and stabilization of the inverted 

pendulums. In this paper, optimal nonlinear stabilization 

problem is addressed: stabilize IPC minimizing an 

accumulative cost functional quadratic in states and 

controls. For linear systems, this leads to linear feedback 

control, which is found by solving a Riccati equation [5], 

and thus referred to as linear quadratic regulator (LQR). 

The inverted pendulum has two equilibrium points, one of 

which is stable while the other is unstable. On the one hand, 

the stable equilibrium point corresponds to a state in which 

the pendulum is pointing downwards. In the absence of any 

control force, the system will naturally return to this state. 

On the other hand, the unstable equilibrium point is 

upwards. The different control strategies try to reach and 

maintain this unstable equilibrium position. 

IPC, however, is a highly nonlinear system, and its 

linearization is far from adequate for control design 

purposes. Nonetheless, the LQR will be considered as a 

baseline controller for our work. 

In general, the control problem consists of obtaining 

dynamic models of systems, and using these models to 

determine control laws or strategies to achieve the desired 

system response and performance. The simplicity of control 

algorithm as well as to guarantee the stability and 

robustness in the closed-loop system is challenging task in 

real situations. Most of the dynamical systems such as 

power systems, missile systems, robotic systems, inverted 

pendulum, industrial processes, chaotic circuits etc. are 

highly nonlinear in nature. The control of such systems is a 

challenging task. 

The Proportional-Integral-Derivative (PID) control gives the 

simplest and yet the most efficient solution to various real-

world control problems. Both the transient and steady state 

responses are taken care of with its three-term (i.e. P, I, and 

D) functionality. Since its invention the popularity of PID 

control has grown tremendously. The advances in digital 

technology have made the control system automatic. The 

automatic control system offers a wide spectrum of choices 

for control schemes, even though, more than 90% of 

industrial controllers are still implemented based around the 

PID algorithms, particularly at the lowest levels, as no other 

controllers match with the simplicity, clear functionality, 

applicability, and ease of use offered by the PID controller. 

The performance of the dynamical systems being controlled 

is desired to be optimal. There are many optimization & 

optimal control techniques which are present in the 

literatures for linear & nonlinear dynamical systems[5-7]. 

The recent development in the area of artificial intelligence 

(AI), such as artificial neural network (ANN), fuzzy logic 

theory (FL), and evolutionary computational techniques 

such as genetic algorithm (GA), and particle swarm 

optimization (PSO) etc., commonly all these are known as 

intelligent computational techniques which have given 

novel solutions to the various control system problems. 

The intelligent optimal control has emerged as viable recent 

approach by the application of these intelligent 

computational techniques [8-18]. There are many examples 

in literature in which the inverted pendulum-cart dynamical 

system has been applied in implementing the various 

control schemes [16-21]. Linear quadratic regulator (LQR), 

an optimal control method, and PID control which is 

generally used for control of the linear dynamical systems 

have been used in this paper to control the nonlinear 

inverted pendulum-cart dynamical system. In recent trends 

even the various advance control approaches are developing 

and being tried for many dynamical systems control, the 

proposed control method is simple, effective, and robust. 

Description mathematical modelling 

Inverted pendulum system equations 

The free body diagram of an inverted pendulum mounted on 

a motor driven cart is shown in Fig. 1 [1-4]. The system 

equations of this nonlinear dynamic system can be derived 
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as follows. It is assumed here that the pendulum rod is 

mass-less, and the hinge is frictionless. In such assumption, 

the whole pendulum mass is concentrated in the centre of 

gravity (COG) located at the center of the pendulum ball. 

The cart mass and the ball point mass at the upper end of the 

inverted  pendulum are denoted as M and m, respectively. 

There is an externally x-directed force on the cart, u(t) , and 

a gravity force acts on the point mass at all times. The 

coordinate system considered is shown in Fig. 1, where x(t) 

represents the cart position, and 


x  (t) is the tilt angle 

referenced to the vertically upward direction. A force 

balance on the system in the x-direction can be written as 

 1
2

2

2

2

umxM x
dt
d

dt
d

G
  

Where, the time-dependent centre of gravity (COG) of the 

point mass is given by the coordinates, (xG ,yG ). 

For the point mass assumed here, the location of the center 

of gravity of the pendulum mass is simply 

XG= X+lsin    and   yG= lcos           (2) 

Where l is the pendulum rod length. Substituting (2) into (1) 

it is written as: 

   3cossin
......

umlmlxmM  
 

In a similar way, a torque balance on the system is 

performed. Fig. 2 shows the force components acting on the 

system. The resultant torque balance can be written as: 

(Fx cos)l – (Fy sin)l = (mg sin)l         (4) 

Where, x
dt
d

F Gx
m

2

2

   and y
dt
d

F Gy
m

2

2

  are the 

force components in x and y directions respectively. 

 
Inverted Pendulum - Cart System 

Fig. 1 Motor driven inverted pendulum-cart system 
 

 
Fig. 2 Vector diagram for force components in torque balance 

 

After manipulation (4) is written as: 

 5sincos
....

 mgmlxm 
 

 

Equations (3) and (5) are the defining equations for this 

system. These two equations are manipulated algebraically 

to have only a single second derivative term in each 

equation. Finally, we may derive the system equations 

describing the cart position dynamics and the pendulum 

angle dynamics respectively. Thus we have: 

 
 6

sincossin
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2

2
..



 
mmM

mgmlu
x
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   
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.
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lmMml

mlgmMu











Equations (6) and (7) represent a nonlinear system which is 

relatively complicated from a mathematical viewpoint. 

Following subsection presents the standard state space form 

of these two nonlinear equations. 

Nonlinear system state space equations of inverted 

pendulum 

For numerical simulation of the nonlinear model for the 

inverted pendulum-cart dynamic system, it is required to 

represent the nonlinear equations (6) and (7) into standard 

state space form: 

   8,, tuxfx
dt
d   

Considering the state variables as following: 

 9,,,
'

3

.

43

'

121 xxxxxxx x  

Then, the final state space equation for the inverted 

pendulum system may be written as: 
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Where  

 11
21 xf 
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If both the pendulum angle 

variables of interest, then the output equation may be 

written as: 

 15
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Equations (10) and (15) give a complete state space 

representation of the nonlinear inverted pendulum-cart 

dynamic system. 

Linear system state space equations of inverted 
pendulum 
Since the goal of this particular system is to keep the 

inverted pendulum in upright position around =0, the 

linearization might be considered about this upright 

equilibrium point. The linear model for the system around 

the upright stationary point is derived by simply 

linearization of the nonlinear system given in (10). Since the 

usual A and B matrices are zero for this case; and so every 

term is put into the nonlinear vector function, f (x,u, t) , then 

the linearized form for the system becomes: 

     16,,
0000

uxx
dt

d
uxJuxJ ux

   

Where, the reference state is defined with the pendulum 

stationary and upright with no input force. Under these 

conditions, X0=0 , and u0=0. Since the nonlinear vector 

function is rather complicated, the components of  the 

Jacobian matrices are determined systemically, term by 

term. The elements of the first second, third, and fourth  

Columns of 
 uxJ x 00

,
 are given by x

f

1

1





, respectively. 

Thus  Combining all these separate terms gives: 
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For the derivative of the nonlinear terms with respect to u , 

we have 
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Finally, after all these manipulations (16) may be written 

explicitly as 
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his is the open loop linearized model for the inverted 

pendulum with a cart force, u(t) , (written in perturbation 

form). Thus, LTI system is in standard state space form. The 

equation (19) may be written in general as: 

 20uBxAx
dt

d
 

 
Equation (20) along with the output equation (15) represents 

the final linear model of the inverted pendulum-cart system. 

This is the simplified model which is used to study the 

system behavior in general and to design LQR. 

Inverted pendulum system equations with disturbance 

input 

The system equations of this nonlinear dynamic system with 

disturbance input can be derived as follows. Consider a 

disturbance input due to wind effects, acting on the inverted 

pendulum in addition to force on the cart, u(t). Let Fw 

represent the horizontal wind force on the pendulum point 

mass. With this additional force component, the force 

balance equation (1) becomes: 

 21
2

2

2

2

Fx
dt

d

dt

d
wG

umxM   

which can be manipulated as to give: 

   22cossin
......

F w
umlmlxmM  

Similarly, the torque in the clockwise direction caused by 

the horizontal wind disturbance is (Fx cos)l. 

Adding the torque contribution of this term the torque 

balance equation (4) becomes: 

 (Fx cos)l – (Fy sin)l = (mg sin)l+(Fw cos)l         (23) 

Which can be modified to give: 

 24cossincos
. .. .

 Fw
mgmlxm   

Equations (22) and (24) are the defining equations for this 

system with a disturbance input. 

The state space equation for inverted pendulum system with 

disturbance input is derived as same of equation (10) with 

following modification: 
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The output equation of the nonlinear inverted pendulum 

system with disturbance input remains same as equation 

(15). 

The linearized model can also be developed as following: 

 
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This is the open loop linearized model for the inverted 

pendulum with a cart force,  
 tu

and a horizontal wind 

disturbance,  tF w
 .  The two inputs have been separated 

for convenience, thus the LTI system can be written as: 

 28
21 Fbb w

uxAx
dt

d
   

CONTROL METHODS 
The following control methods are presented here to control 
the nonlinear inverted pendulum-cart dynamic system [3, 4]. 
3.1 PID control 
To stabilize the inverted pendulum in upright position and 
to control the cart at desired position using PID control 
approach two PID controllersangle PID controller, and cart 
PID controller have been designed for the two control loops 
of the system. The equations of PID control are given as 

following:  

 
Where,  te

and  tex
are angle error and cart position 

error. Since the pendulum angle dynamics and cart position 
dynamics are coupled to each other so the change in any 
controller parameters affects both the pendulum angle and 
cart position which makes the tuning tedious. The tuning of 
controller parameters is done using trial & error method and 
observing the responses of SIMULINK model to be 
optimal. 
Optimal Control using LQR 
Optimal control refers to a class of methods that can be used 
to synthesize a control policy which results in best possible 
behavior with respect to the prescribed criterion (i.e. control 
policy which leads to maximization of performance). The 
main objective of optimal control is to determine control 
signals that will cause a process (plant) to satisfy some 
physical constraints and at the same time extremize 
(maximize or minimize) a chosen performance criterion 
(performance index (PI) or cost function). The optimal 
control problem is to find a control which causes the 
dynamical system to reach a target or follow a state variable 
(or trajectory) and at the same time extremize a PI which 
may take several forms [1-7]. 
Linear quadratic regulator (LQR) is one of the optimal 
control techniques, which takes into account the states of 
the dynamical system and control input to make the optimal 
control decisions. This is simple as well as robust [1-7]. 

After linearization of nonlinear system equations about the 

upright (unstable) equilibrium position having initial 

conditions as 
 0,0,0,00

T
x 

the linear state-space 

equation is obtained as 
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x   The state feedback control u=-Kx 
leads to  

 32)(
.
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where, K is derived from minimization of the cost function: 
 

   33  dtRuQxJ ux
TT

 
where, Q and R are positive semi-definite and positive 
definite symmetric constant matrices respectively. The LQR 
gain vector K is given by: 
 

 34
1

PK BR
T

  
Where, P is a positive definite symmetric constant matrix 
obtained from the solution of matrix algebraic reccatti 
equation (ARE): 
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In the optimal control of nonlinear inverted pendulum 
dynamical system using PID controller & LQR approach, 
all the instantaneous states of the nonlinear system, 
pendulum. Angle 

.


.

 cart position x , 
and cart velocity  have been considered available for 
measurement which are directly fed to the LQR. The LQR 
is designed using the linear state-space model of the system. 
The optimal control value of LQR is added negatively with 
PID control value to have a resultant optimal control. The 
tuning of the PID controllers which are used here either as 
PID control method or PID+LQR control methods is done 
by trial & error method and observing the responses 
achieved to be optimal. 
 
SIMULATION & RESULTS 
The MATLAB-SIMULINK models for the simulation of 
modelling, analysis, and control of nonlinear inverted 
pendulum-cart dynamical system have been developed. The 
typical parameters of inverted pendulum-cart system setup 
are selected as [16,20]: mass of the cart (M): 2.4 kg, mass of  
the pendulum (m): 0.23 kg, length of the pendulum (l): 0.36 
m, length of the cart track (L): ± 0.5 m, friction coefficient 

of the cart & pole rotation is assumed negligible. After 
linearization the system matrices used to design LQR are 
computed as below: 
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With the choice of 

 
 
 
we obtain LQR gain 
vector as following: 

 5768.273607.229783.257896.137 K  
Here three control schemes have been implemented for 
optimal control of nonlinear inverted pendulum-cart 
dynamical system: 1. PID control method having two PIDs 
i.e. angle PID & cart PID, 2. Two PIDs (i.e. angle PID & 
cart PID) with LQR control method, 3. One PID (i.e. cart 
PID) with LQR control method. Both alternatives of 
PID+LQR control method are similar in all respect of 
control techniques but they differ only in number of PID 
controllers used. The SIMULINK models for these control 
schemes are shown in Figs. 2, 4, and 6 respectively. The 
corresponding simulation results are shown in Figs. 3, 5, 
and 7 respectively. 
The reference angle has been set to 0 (rad), and reference 
cart position is set to 0.1 (m). The tuned PID controller 
parameters of these control schemes are given as in table  
PID control response is shown in Fig. 3. It is observed here 
that the pendulum stabilizes in vertically upright position 
after two small overshoots. The cart position x reaches the 
desired position of 0.1 (m) quickly & smoothly. The control 
input u is bounded in range [-0.1 0.1]. The response of 
optimal control of inverted pendulum system using two PID 
controllers (angle PID & cart PID) with LQR control 
method is shown in Fig. 5, and using one PID controller 
(cart PID) with LQR control method is shown in Fig. 7 
respectively. Here for both control methods of PID+LQR 
the responses of angle , cart position 
x , cart velocity , and control u have been plotted. It is 
observed that in both control schemes the pendulum 
stabilizes in vertically upright position quickly & smoothly 
after two minor undershoots and a minor overshoot The 
angular velocity approaches 0 (rad/s) quickly. The cart 
position x reaches smoothly the desired position of 0.1 (m) 
quickly in approx. 6 seconds, and the cart velocity reaches 
to zero. The control input u is bounded in range [-0.1 0.1]. 
Comparing the results it is observed that the responses of 
both alternatives of PID+LQR control method are better 
than PID control, which are smooth & fast also. It is also 
observed that the responses of 2PID+LQR control and cart 
PID+LQR control are similar. Since 2PID+LQR method has 
additional degree of freedom of control added by the angle 
PID controller, this will have overall better response under 
disturbance input. But the cart PID+LQR control has 
structural simplicity in its credit. The performance analysis 
of the control schemes gives that these control schemes are 
effective & robust. 
position x , cart velocity  ,and control force u of nonlinear 
inverted pendulum system with Angle PID , Cart PID & 
LQR Control. 
 

 
Figure 3. Responses of pendulum angle , cart position x , and 

control 

force u of nonlinear inverted pendulum system with PID 
control. 

 

 

Figure 4. Responses of pendulum angle , angular velocity 
.

 , 

cart 

CONCLUSION 
 In this paper we have introduced the nonlinear inverted 
pendulum-cart dynamic system and by use of PID controller 
and LQR, an optimal control technique to make the optimal 
control decisions, have been implemented to control this 
system. In the optimal control of nonlinear inverted 
pendulum dynamical system using PID controller and LQR 
approach all the instantaneous states of the nonlinear system 
are considered available for measurement, which are 
directly fed to the LQR. The tuning of the PID controllers 
which are used here either as PID control method or 
PID+LQR control methods is done by trial & error method 
and observing the responses achieved to be optimal. The 
analysis of the responses of control schemes gives that the 
performance of proposed PID+LQR control method is better 
than PID control. This comparative performance 
investigation for this benchmark system establishes that the 
proposed PID+LQR control approach being simple, 
effective & robust control scheme for the optimal control of 
nonlinear dynamical systems. 
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