
Automatic Control of Aircraft in Longitudinal Plane
During Landing

Automatic control of aircraft during landing is discussed

and a new structure of automatic landing system (ALS)

is designed using the dynamic inversion concept and

proportional-integral-derivative (PID) controllers in conventional

and fuzzy variants. Theoretical results are validated by numerical

simulations in the absence or presence of wind shears and sensor

errors.

I. INTRODUCTION

The first automatic landing system (ALS)
was designed in England in 1965. Most aircraft
have ALSs based on the instrumental landing
system (ILS) [1], using different conventional
control laws: PD (proportional-derivative),
PID (proportional-integral-derivative), or PI
(proportional-integral) for the altitude and descent
velocity control [2, 3], PD or PID laws for the pitch
angle and pitch rate control, as well as different
laws based on state vector, dynamic inversion
concept, command filters, dynamic compensators,
and state observers [4�7]. GPS use and the increase
of the sensors� performances for the angular rates�
measurement lead to the increase of the landing
trajectory track accuracy [8, 9]. If a conventional
control methodology is used, a linearized model of
the nonlinear system should be previously developed;
as a consequence, to obtain satisfactory control of
a complex nonlinear system, nonlinear controllers
should be developed [10].
This paper focuses on the automatic control of

aircraft in the longitudinal plane, during landing,
by using the linearized longitudinal dynamics of
aircraft, considering the longitudinal and vertical wind
shears [4] and the errors of the sensors. Our aim is to
design a new ALS by using the dynamic inversion
concept, command filters, and the altitude control
after the state vector. In the design of the new landing
system, the dynamic inversion method is chosen for
its applicability to nonlinearities in the system and
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Fig. 1. Motion geometry during landing.

for its simplicity; on the other hand, the controllers
of the same ALS have also been designed using the
fuzzy logic because the controllers tuning can be
made much finer by means of universe of discourse,
number of membership functions, and their shapes, or
chosen rules base.
The contributions of this paper are: the general

design of the new ALS structure including the
longitudinal velocity control, the PID conventional
controllers tuning for the altitude, pitch and velocity
channels, the design of the above controllers in an
intelligent approach by using the fuzzy techniques,
the study of the errors induced by the wind shears
and errors of the gyro sensors on both variants of the
ALS (conventional and fuzzy). Theoretical results are
validated by numerical simulations in the absence or
presence of wind shears and sensor errors.

II. GEOMETRY OF THE LANDING IN
LONGITUDINAL PLANE

The motion trajectory of aircraft in longitudinal
plane, during landing, consists of the slope segment
ApA0 (Fig. 1).
The coordinate xp0 is calculated by using the

formula:

xp0 = xp ¡Hp= tan(°c), °c < 0 (1)

while the calculated altitude is obtained as follows:

Hc =
½
(x¡ xp0) ¢ tan(°c) for H ¸H0 =Hc(t0)
H0 ¢ exp((t0¡ t)=¿) for H <H0 =Hc(t0)

(2)
where ¿ is the time constant that defines the
exponential curvature (flare landing phase), while t0 is
the time moment when the glide slope phase ends and
the second landing phase begins. From the definition
of the horizontal aircraft forward velocity _x in the
point with the coordinate x (flare curve), at a random
time moment t (t > t0), we get t¡ t0 = (x¡ x0)= _x, and,
using this relationship, the second equation (2) gets
the form:

Hc =H0 exp((x0¡ x)=¿ _x), H <H0: (3)
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Thus, the geometry of aircraft motion in the
longitudinal plane, during landing, is described by the
first equation (2), with xp0 having the form (1)�glide
slope phase, or by (3)�flare landing phase, with _x
having the form ( = ®+°):

_x=Vx cos +Vz sin = Vx cos +V0 sin®sin (4)

Vx and Vz are the aircraft velocity components along
aircraft longitudinal axis (Ox) and normal axis (Ox),
�pitch angle, ®�attack angle, and °�slope angle
of aircraft trajectory.
The descent velocity _H and the calculated one _Hc

(velocity that must be reached by the aircraft) are:
_H = V0 sin°,

_Hc =V0 sin°c
»= Vxc sin°c; V0 is aircraft

nominal velocity, Vxc�calculated longitudinal velocity;

during flare, we write: _Hc =¡Hc=¿ , _Hc0 =¡H0=¿ .
If V0 and the coordinates of points Ap and A0 are
known, we calculate ¿ , xp0 , and xtd. If flare phase
takes 5¿ s [1] and aircraft velocity is approximately
constant during this landing phase, we obtain xtd ¡
x0 = V0 ¢ 5¿ . Using the above equations and assuming
Hc =H0, we get H0

»=¡V0¿ sin°c; °c is expressed in
radians. According to Fig. 1, H0 =¡(xp0 ¡ x0) ¢ tan°c.
Also,

V0¿ = (xp0 ¡ x0)=cos°c: (5)

With the known values of x0 and V0, by means
of (5) and xtd¡ x0 =V0 ¢ 5¿ , ¿ and xtd are obtained.
In [2] ¿ is calculated with respect to the velocity
VG =V0 cos°+Vvx; Vvx is the wind velocity along
longitudinal axis, depending on the descent rates
_H0 =

_H(x0),
_Htd =

_H(xtd).

III. AIRCRAFT DYNAMICS IN LONGITUDINAL PLANE
AND THE MODEL OF THE WIND SHEARS
The linear model of aircraft motion, in longitudinal

plane, is described by the state equation _x=Ax+
Bu+Bvvv, with x�state vector (4£1), u�command
vector (2£1), vv�vector of disturbances Vvx and
Vvz (components of the wind velocity along the axes
Ox and Oz [3, 4]), x= [Vx ® !y ]T, u= [±p ±T]

T ,
vv = [Vvx Vvz]

T. In the previous equations !y is the
pitch angular rate, ±p�elevator deflection, ±T�engine
command, while matrices A, B, Bv have the forms [5]:

A =

2
6664

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 1 0

3
7775

=

2
6664

Xu Xw 0 ¡g cos 0

Z ¤u Zw 1 ¡(g=V0) sin 0

�Nu
�Nw

�Nq
�N

0 0 1 0

3
7775

B=

·
b11 b21 b31 0

b12 b22 b32 0

¸T
=

·
0 Z

±p
=V0

�N
±p

0

X±T Z±T =V0 N±T 0

¸T

Bv =

·¡a11 ¡a21 ¡a31 0

¡a012 ¡a022 ¡a032 0

¸T

=

· ¡a11 ¡a21 ¡a31 0

¡a12=(57:3V0) ¡a22=(57:3V0) ¡a32=(57:3V0) 0

¸T
:

Elements of the matrices A, B, Bv have been
calculated using the equations in [5], with respect to
the chosen aircraft stability derivates. Wind shears�
modeling is presented in [4]:

Vvx =¡Vvx0 sin(!0t), Vvz =¡Vvz0[1¡ cos(!0t)],
!0 = 2¼=T0 (6)

where T0 is the flight time inside the wind shear; the
aircraft faces head wind and rear wind combined with
vertical wind.

IV. AUTOMATIC CONTROL OF AIRCRAFT IN
LONGITUDINAL PLANE USING DYNAMIC
INVERSION
For the new ALS design, because a quantitative

nonlinear description of the longitudinal dynamics
was not available, we used the linearized dynamics
(matrices A and B are known). The use of the
dynamic inversion principle increases the generality
character of our new ALS; therefore, the designed
system can be used both for the case when the aircraft
dynamics are nonlinear and for the case when the
aircraft dynamics are linear. Using the dynamic
inversion, the command vector ±c = [±pc ±Tc]

T is
obtained; by expressing from the state equation
_x=Ax+Bu+Bvvv, the first and the third differential
equation, with A, B, and Bv having the above
forms, the command vector components result as
follows:

±pc = b
¡1
31 ( _!yc ¡ a31Vx ¡ a32®¡ a33!y + a31Vvx+ a

0
32Vvz)

±Tc = b
¡1
12 (

_Vxc ¡ a11Vx ¡ a12®¡ a14 + a11Vvx+ a
0
12Vvz):

(7)

_!yc and
_Vxc are the calculated values of the angular rate

_!y and the linear rate
_Vx, respectively. Equations (7)

and the below equivalent form describe the inverse
model of aircraft motion:

±c =

·
±pc

±Tc

¸

= [b¡131 b¡112 ]

£
· _!yc
_Vxc

¸
¡
·
a31 a32 a33 0

a11 a12 0 a14

¸
x+

·
a31 a032

a11 a012

¸
vv

¶
:

(8)
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Fig. 2. New automatic control system for aircraft landing control.

Fig. 3. Block diagram with transfer functions for system in Fig. 2.

According to [5] !y is !y =
_cos'+ _Ã cos sin' and,

considering the assumption '= _Ã = 0 ('�roll angle
and Ã�yaw angle), we obtain _!yc =

¨
c.

In order to obtain the command inputs of the flight
control subsystems, we use command filters (reference
filters) of order r. As a result, for the command of the
pitch angle , we use the filter which is described by
the equation:

¯(s) =
!2n

s2 +2»!ns+!2n
¯
c (9)

with !n�natural pulsation, »�damping coefficient,
and ¯c�calculated value of the pitch angle. With these
we obtain the components of the angular rate control
law [6]:

_!yc =
¨
c =

¨̄
+ kp(

¯¡ )+ kpi

Z
( ¯¡ )dt+ k

_
p

d

dt
( ¯¡ ):

(10)

For the command of speed Vx, a filter described by
equation

V̄x = V̄xc=(Txs+1) (11)

is used; Tx is the filter time constant, while V̄xc is the
desired value of the velocity Vx. The filter provides

the signals V̄x,
_̄
Vx necessary for the calculation of the

acceleration _Vxc [7]:

_Vxc =
_̄
Vx+ kx(V̄x¡Vx)+ ki

Z
(V̄x¡Vx)dt

+ kd
d

dt
(V̄x¡Vx): (12)

The control laws of the subsystems for the pitch
angle and Vx velocity control are described by (8),
with _!yc and

_Vxc having the forms (10) and (12)
(Fig. 2). We added to the four states a new state (the
altitude H); its equation describes aircraft kinematics
and may be written under the form _H »= V0°. For the
altitude calculation a PID controller is used. This
controller is described by (13) [11]:

¯
c =

_Hc+ k
h
p(Hc¡H)+ khi

Z
(Hc¡H)dt

+ k
_h
p

d

dt
(Hc¡H) (13)

where Hc is described by
_Hc
»= Vxc°c. The block

diagram with transfer functions for the ALS
is presented in Fig. 3. For better performances
conventional controllers may be replaced by optimal,
adaptive, or fuzzy controllers [12�14].
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Fig. 4. Membership functions for inputs of fuzzy controllers.

V. THE DESIGN OF THE FUZZY LOGIC
CONTROLLERS

Besides the conventional controllers we design
fuzzy logic controllers (FLCs) to make our new ALS
more robust and viable even in the case of complex
nonlinear landing equations. Using multivalent
fuzzy logic, linguistic expressions in antecedent
and consequent parts of IF-THEN rules describing
the operator�s actions can be efficiently converted
into control algorithms suitable for microcomputer
implementation or implementation with specially
designed fuzzy processors [10]. In contrast with
traditional control theory, an FLC is not based on a
mathematical model, and provides a certain level of
artificial intelligence to conventional controllers; these
methods are characterized by good adaptability and
robustness.
In this section we develop three fuzzy controllers

which may replace the conventional controllers. In
our case the chosen fuzzy controllers are the �PID�
type; this means that a PID dependence is realized
between the input and the output [15]. Thus, three
fuzzy controllers were developed for the control of
altitude, pitch angle, and velocity. The second and
the third controllers are identical from the fuzzy
structure point of view, the differences appearing at
the proportional, integral, and derivative coefficients
obtained after the tuning process. The error and the
change in error are the controllers� inputs, while the
membership functions assigned for the inputs are of
the triangular type. To reduce the computing time, we
reduce the number of the membership functions and
we simplify these functions. Membership functions
(mf) for inputs are presented in Fig. 4. To define
the rules a Sugeno fuzzy model was chosen (model

proposed by Takagi, Sugeno, and Kang [16]). The
next rules of the two fuzzy controllers have been
chosen as

Rule 1: If e is A11 and ¢e is A
1
2, then y

1(e,¢e) = ¡0:1

Rule 2: If e is A11 and ¢e is A
2
2, then y

2(e,¢e) = ¡0:05

Rule 3: If e is A21 and ¢e is A
1
2, then y

3(e,¢e) = ¡0:05

Rule 4: If e is A21 and ¢e is A
2
2, then y

4(e,¢e) = 0:005

Rule 5: If e is A21 and ¢e is A
3
2, then y

5(e,¢e) = 0:03

Rule 6: If e is A31 and ¢e is A
1
2, then y

6(e,¢e) = ¡0:1

Rule 7: If e is A31 and ¢e is A
2
2, then y

7(e,¢e) = 0:001

Rule 8: If e is A31 and ¢e is A
3
2, then y

8(e,¢e) = 0:005:

(14)

Rule 1: If e is A11 and ¢e is A
1
2, then y

1(e,¢e) =¡2

Rule 2: If e is A11 and ¢e is A
2
2, then y

2(e,¢e) =¡1:6

Rule 3: If e is A11 and ¢e is A
3
2, then y

3(e,¢e) = 0

Rule 4: If e is A21 and ¢e is A
1
2, then y

4(e,¢e) =¡1:6

Rule 5: If e is A21 and ¢e is A
2
2, then y

5(e,¢e) = 0

Rule 6: If e is A21 and ¢e is A
3
2, then y

6(e,¢e) = 1:6

Rule 7: If e is A31 and ¢e is A
1
2, then y

7(e,¢e) = 0

Rule 8: If e is A31 and ¢e is A
2
2, then y

8(e,¢e) = 1:6

Rule 9: If e is A31 and ¢e is A
3
2, then y

9(e,¢e) = 2:

(15)
Aiq (q= 1,2, i = 1,3) are the individual antecedent
fuzzy sets of each input variable, e�the error and
¢e�the change in error.
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VI. NUMERICAL SIMULATION RESULTS

To study the performances of the new ALS,
we consider a Charlie-1 aircraft with the following
stability derivates [1]:

Xu = ¡0:021[1=s], Xw = 0:122[1=s]

Zu = ¡0:2[1=s], Zw =¡0:512[1=s]

V0
»= Vx0 = 67[m/s], N

w
=¡0:006[deg/(s ¢m)]

N_w = ¡8 ¢ 10¡4[deg/m], X±T = 3:66 ¢ 10
¡6[(m/s)/deg]

Z±T = ¡1:69 ¢ 10
¡7[(m/s)/deg], N±T

»= 0

Z±p = ¡1:96[(m/s)/deg], N±p = 0

sin 0
»= 0, cos 0

»= 1, Z ¤u = Zu=V0:

The coordinates of point Ap have been chosen
as Hp = 100 m, xp = 0 m. The trajectory slope is
°c =¡2:5 deg, while the other parameters in Fig. 3
have these values: Tx = 5 s, Tp = 0:01 s, TT = 5 s, !n =

3 rad/s, » = 0:7, » = 0:7, V̄xc = 67 m/s. The following
values of the controller parameters have been obtained
using the well-known Ziegler-Nichols tuning method:

kp = 50[(deg/s
2)/deg], kpi = 10[(deg/s

3)/deg]

k
_
p = 2[(deg/s

2)=(deg/s)], khp = 0:5[deg/m]

khpi = 10
¡4[(deg/s)/m], k

_h
p = 0:5[deg/(m/s)]

kx = 20[(m/s
2)=(m/s)], ki = 0:01[(m/s

3)=(m/s)]

kd = 14:

A. Validation of the ALS with Conventional Controllers

In Fig. 5 and Fig. 6 we represent the time
characteristics for the glide slope landing phase and
flare landing phase, respectively in the presence or in
the absence of the wind shears which are modeled
by (6) with T0 = 60 s, Vvx0 = 10 m/s, Vvz0 = 15 m/s.
To be sure that the new ALS responds well to wind
shears, we have chosen values of Vvx0 and Vvz0 bigger
than their medium values.
The presence of the wind shears is not very

visible. The curves with solid line (without wind
shears) overlap almost perfectly over the curves
plotted with dashed line (with wind shears). The time
origin for the flare trajectory is chosen as zero when
the altitude is H =H0 = 20 m (the altitude at which
the glide slope ends).
In the above simulations we did not take into

consideration the errors of the sensors (the sensors are
used for the measurement of the states). The errors of
the gyro sensors in the pitch channel are considered
in simulations below. For the determination of the
pitch angle we may use an integrator gyro. This
gyro has errors and it is interesting to see if the sensor

errors affect the landing; its error model takes into
account the parameters from data sheets offered by the
sensor producers. The error model is described by the
equation:

= ( i+ S ¢ ar +B+ º)(1+¢K=K): (16)

is the output pitch angle (the perturbed signal),
i�input pitch angle, S�sensibility to the
acceleration ar applied on an arbitrary direction,
B�bias, K�scale factor, ¢K�calibration error of
the scale factor, and v�sensor noise. This error model
has been introduced in the ALS model in the feedback
after the pitch angle . In the error model the bias is
given by its maximum value B as the percentage of
span; the calibration error of the scale factor is given
by its absolute maximum value ¢K as the percentage
of K; the noise is given by using its maximum density
value. The inputs of the error model are: pitch angle

i and acceleration ar, considered to be the resultant
acceleration signal that acts upon the carrier vehicle,
while the output is the disturbed pitch angle . In
the numerical simulation the following parameters
have been used: noise density: 5:8 ¢ 10¡6[deg=

p
Hz],

bias: 9:8 ¢ 10¡8[deg], error of the scale factor: 5:2 ¢
10¡4% ¢K, sensibility to accelerations »= 0[deg=g];
g�gravitational acceleration. Figures 7 and 8 depict
the time characteristics of the ALS, with conventional
controllers, taking into account the absence or
presence of gyro sensor errors. Although these errors
affect some variables, time variation of altitude and
landing phases time length are not affected. So, sensor
errors do not affect landing.
In Table I we present, for the most important

5 variables, the influences of the wind shears and
errors of the sensor upon the parameters maximum
absolute deviation with respect to their steady values.
From the values in Table I it can be noticed that the
sensor errors have less significant influence on the
steady-state values of the variables; generally, the ratio
of the errors induced by the turbulences and sensor
errors is 3 : 1.

REMARK 1 From the theoretical part of this paper,
we retain the mandatory values of the slope angle:
¡2:5 deg (first landing phase) and 0 deg (second
landing phase). Analyzing Figs. 5�8 we remark on the
correctness of the simulation data; thus, for the glide
slope (Figs. 5 and 7) the aircraft slope angle tends to
be the desired value in about 7 s, while, for the flare
phase (Figs. 6 and 8) it tends to be the desired value
in about 9 s. In the glide slope phase, the aircraft
must have a linear descendent trajectory (last graphic
of Fig. 5) and, therefore, the pitch angle must be
negative; as one can see in Figs. 5 and 7, the pitch
angle is ¡2:3 deg, while the attack angle is slightly
positive (»= 0:2 deg); it results in the desired slope
angle (¡2:5 deg). In the flare phase aircraft must
describe a parabolic trajectory (last graphic of Fig. 6)
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Fig. 5. Time characteristics of ALS with PID controllers, for glide slope phase, with or without wind shears.

Fig. 6. Time characteristics of ALS with PID controllers, for flare phase, with or without wind shears.
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Fig. 7. Time characteristics of ALS with PID controllers, for glide slope phase, taking into account absence or presence of sensor
errors.

Fig. 8. Time characteristics of ALS with PID controllers, for flare phase, taking into account absence or presence of sensor errors.
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with a null slope angle; in Figs. 6 and 8, the pitch
angle is slightly positive (0.2 deg), while the attack
angle is slightly positive too (0.2 deg); it results in the
desired null slope angle. On the other hand the pitch
angle is controlled by means of the elevator; after the
pitch angle stabilization (about 7 s), the elevator must
not be deflected any more and, as a consequence, after
7 s, the elevator deflection remains at its steady null
value (Figs. 5�8)).

B. Comparison between the Two Variants of ALS

Replacing the conventional controllers with
fuzzy controllers in the ALS structure, dynamic
characteristics with superior quality indicators are
obtained; moreover, the fuzzy controllers have the
advantage of very good adaptability, robustness, and
software implementation capabilities.
Figures 9 and 10 expose the time characteristics of

the ALS, with conventional controllers (solid line) and
fuzzy controllers (dashed line), while in Fig. 11 the
characteristics H(x), for the 2 cases (conventional and
fuzzy controllers), are represented.)

REMARK 2 The aim of the controllers� design, by
using the fuzzy control technique, was to improve the
system performances (damping, overshoot (OVS), and
transient regime period (TRP)). From the damping
point of view, we see a decrease especially in the case
of pitch angular rate and elevator deflection for ALS
with fuzzy controllers with respect to the ALS with
conventional controllers.

In Table II a comparison for the most important 5
variables, between the OVS and the TRP for the two
variants of ALS is achieved; it can be concluded that
the fuzzy control improves significantly the variables�
OVS. From the TRP point of view, the values are
approximately the same, with a slight advantage
for the ALS with fuzzy controllers. For OVS the
conventional/fuzzy variants improvement ratios are:
2.45 times (phase 1) and 1.57 times (phase 2)�attack
angle; 1.32 times (phase 2)�pitch angle (phase 1:
damped response for fuzzy controllers); 1.27 times
(phase 2)�slope angle (phase 1: damped responses
for both controls); 1.23 times (phase 1) and 1.13 times
(phase 2)�Vx velocity; 2.19 times (phase 1), 1.7 times
(phase 2)�Vz velocity.
For Charlie-1 aircraft, the glide slope phase

takes approximately 26.9 s, while the flare phase
takes approximately 6.1 s; the steady values of
longitudinal and vertical velocity are Vx

»= 67 m/s and
Vz
»= 3 m/s, respectively. By using this information,

one makes a brief analysis regarding the numerical
simulation data correctness: 1) horizontal distance
covered by aircraft in the first landing phase must be
approximately 67 m/s ¢ 26:9s = 1802:3 m, while, in
the second landing phase, it must be approximately
67 m/s ¢ 6:1s = 408:7 m (Fig. 11); 2) vertical distance

covered by aircraft must be 3 m/s ¢ 26:9s = 80:7 m
(phase 1) and 3 m/s ¢ 6:1s = 18:3 m (phase 2). These
values are again confirmed by Fig. 11: phase 1 means
an 80 m descent for aircraft center of gravity, while
phase 2 means a 20 m descent; the difference of
1.7 m appears because the aircraft center of gravity
is approximately 1.7 m above the ground.

REMARK 3 We can see that some of the variables
have big amplitudes at the landing beginning; because
we do not have any information regarding the trim
conditions which lead to the stability derivates,
our initial conditions (Vx = 80 m/s, ®= = 0 deg,
!y = 0 deg/s) were easily different from these trim
condition.

C. Validation of the ALS with Fuzzy Controllers

Figures 12 and 13 depict the time characteristics
of the ALS, with PID fuzzy controllers, taking or not
taking into consideration the wind shears. Wind shears
affect the transient regime of the two phases in an
insignificant manner: steady regime is not affected,
while TRP is approximately the same for the two
cases.
Figures 14 and 15 depict the time characteristics

of the ALS with PID fuzzy controllers. The sensor
errors produce an increase of the signals amplitude
in the transient regime and very small oscillations in
the steady regime, but these errors do not affect the
two landing phases. Wind shears and sensor errors
influences upon the parameters� maximum absolute
deviation with respect to their steady values are
presented in Table III. An errors� level reduction can
be seen if fuzzy controllers are used.

REMARK 4 The biggest absolute deviations with
respect to the steady values appear for vertical
velocity Vz (about 11�13 times bigger for ALS
with conventional controllers�Table I and about
10�12 times bigger for the ALS with fuzzy
controllers�Table III); therefore, the wind shears and
sensor errors affect in principal the vertical velocity
and affect less the attack and pitch angles, and so
on. Usually, an influence on the vertical speed is
equivalent, from the landing point of view, with an
influence on the flight altitude. These deviations can
be considered as additional disturbance acting upon
aircraft during landing. In phase 1 this disturbance
(vertical wind shear) has no effect (Fig. 11)�aircraft
trajectory is linear (both variants of ALS); a difference
appears in phase 2 when wind shears can be more
dangerous. Here, the vertical velocity increase for
ALS with conventional controllers (Fig. 11) leads to
faster ground approach (1 s); although the aircraft
reaches the ground with 1 s delay, the flare for
the ALS with fuzzy controllers is smoother. The
little hump (ALS with conventional controller) is a
disadvantage.
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Fig. 9. Time characteristics of ALS with PID conventional and fuzzy controllers for glide slope phase.

Fig. 10. Time characteristics of ALS with PID conventional and fuzzy controllers for flare phase.
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Fig. 11. Characteristics H(x) for ALS with conventional/fuzzy controllers.

Fig. 12. Time characteristics of ALS with fuzzy controllers, for glide slope phase, with or without wind shears.
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Fig. 13. Time characteristics of ALS with fuzzy controllers, for flare phase, with or without wind shears.

Fig. 14. Time characteristics of ALS with fuzzy controllers, for glide slope phase, considering or not considering sensor errors.
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Fig. 15. Time characteristics of ALS with fuzzy controllers, for flare phase, considering or not considering sensor errors.

TABLE I
Parameters Maximum Absolute Deviation with Respect to their Steady Values (ALS with PID Controllers)

® [deg] [deg] ° [deg] Vx [m/s] Vz [m/s]

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

Parameters� Maximum
Absolute Deviation

ALS with wind shears 0.0235 0.0314 0.031 0.0298 0.0045 0.00469 0.0162 0.0228 0.4416 0.4356

ALS with sensor errors 0.0124 0.0141 0.0041 0.0061 0.0136 0.0119 0.0722 0.077 0.1764 0.2388

TABLE II
Quality Indicators for ALS with Conventional Controllers and ALS with Fuzzy Controllers

Variable Attack Angle Pitch Angle Slope Angle Velocity Vx Velocity Vz

Quality Indicators OVS [deg] TRP [s] OVS [deg] TRP [s] OVS [deg] TRP [s] OVS [deg] TRP [s] OVS [deg] TRP [s]

Glide slope phase 1.4635 7 0.95 7 0 7 39.65 7 20.548 7

Flare phase 1.126 9 2.012 9 1.68 9 36.12 8 18.792 10

ALS
(PID)

Glide slope phase 0.5982 6.6 0 6.6 0 6.6 32.1 7 9.394 6.5

Flare phase 0.716 8.5 1.52 8.5 1.326 8.5 32.02 8 11.02 10

ALS
(fuzzy)

VII. CONCLUSION

Simulation results show that the new ALS has
been shown to perform well in its ability to track
the desired flight path angle during glide slope and
flare. Wind shears have the biggest influence on the

system variables, while sensor errors have the lowest
one. For the designed ALS, the following original
issues can be mentioned: 1) the landing geometry;
2) the design of the PID controller for the altitude H,
design of the command filter and PID controller for
pitch angle, synthesis of the control law ±pc using the

CORRESPONDENCE 1349



TABLE III
Parameters Maximum Absolute Deviation with Respect to their Steady Values (ALS with Fuzzy Controllers)

® [deg] [deg] ° [deg] Vx [m/s] Vz [m/s]

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

Parameters� Maximum
Absolute Deviation

ALS with wind shears 0.0242 0.032 0.0225 0.0297 0.0074 0.0073 0.0002 0.0002 0.3432 0.4488

ALS with sensor errors 0.0075 0.0069 0.0035 0.0035 0.0089 0.0086 0.0036 0.0032 0.1128 0.114

dynamic inversion; 3) the design of the PID controller
for velocity Vx, synthesis of the control law ±Tc , and
the afferent command filter design; 4) the control laws
of the three controllers (conventional or fuzzy) are
chosen such that the system is easily configurable:
the signals provided by the transducers for the
velocity Vx and pitch angle may be replaced by a
strap-down inertial navigator; velocity Vx is obtained
by the integration with respect to time of the signal
provided by an accelerometer ax (placed along aircraft
longitudinal axis), while the pitch angle is obtained
by the integration with respect to time of the signal
provided by the pitch angular rate gyro (!y); this
signal, together with the one provided by an attack
angle sensor, are used to calculate the flight path angle
°, descent velocity _H, and altitude H (without using
an altimeter); so, only three sensors are necessary:
a sensor for ax, a sensor for ®, and a sensor for !y;
5) the study of the errors induced by wind shears
and gyro errors, using conventional and fuzzy
controllers.
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