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Abstract 
In this paper, we consider the approximate feed- 

back linearization of a nonlinear system with one in- 
put in a neighborhood of a trajectory. We obtain a 
normal form for the dynamics in a neighborhood of a 
given trajectory. The normal form can be used to find 
a more aggressive trajectory in a vicinity of the original 
trajectory. The process can be repeated several times, 
yielding an iterative procedure for designing aggressive 
trajectories. An example is given to illustrate the ap- 
proach. 

Keywords. Nonlinear control, approximate lin- 
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Introduction 
For systems described by nonlinear models one is 

often interested in finding aggressive trajectories rather 
than merely stabilizing a constant operating point. 
Consider, for example, a helicopter performing a heavy 
lift operation to deliver water to a forest fire. In such 
a task, one is interested in connecting an initial and fi- 
nal point in the state space by an aggressive (e.g., fast) 
trajectory. 

For nonlinear systems that satisfy the linear con- 
trollability and involutivity conditions necessary (and 
sufficient) for exact input-to-state linearization (see, 
e.g., [5] or [4]), the problem is easily solved. When, as is 
often the case, our system does not comply, we must re- 
sort to approximations. A number of approximate feed- 
back linearization approaches have been been studied 
include techniques for linearization about a point [6], 
linearization about an equilibrium manifold [3, 71, and 
linearization about a region in a least squares sense [a ] .  

In [3], the problem of finding trajectories connect- 
ing two equilibrium points was considered. It has been 
shown that this can be accomplished by finding a co- 
ordinate system in a neighborhood of the equilibrium 
manifold and designing a tracking control law for a tra- 
jectory of a linear system approximating given system 
about the equilibrium manifold. It has been shown that 
if the desired trajectory of the system stays €-close to 
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the equilibrium manifold then there is ail actual trajec- 
tory of the real system that is e2-close to the desired 
one. This approach allows one to connect connecting 
two equilibrium points by trajectories that stay close 
to the equilibrium maniold. As a consequence of being 
close the equilibrium manifold, these trajectories are 
necessarily slow. 

In this paper we show how one can connect two 
equilibium points by aggressive trajectories. Such tra- 
jectories do not remain close to the equilibrium mani- 
fold. 

The approach taken in this paper is to find an 
input-to-state linearizable nonlinear system that ap- 
proximates the given nonlinear system in a neighbor- 
hood of a given trajectory. We obtain a normal form for 
the dynamics in a neighborhood of a given trajectory. 
Since we use a homotopy operator approach (cf. [l]), 
our approach is constructive requiring only the solu- 
tion of ODES. The normal form can be used to find a 
more aggressive trajectory in a vicinity of the original 
trajectory. The process can be repeated several times, 
yielding an iterative procedure for designing aggressive 
trajectories. An example is given to illlistrate the ap- 
proach. 

1. Approximate Feedhack 
Linearization in a Neighborhood of 

a Trajectory 
The main object of study in this paper is the @ne 

nonlinear control system: 

( f , g )  : i = f(.) + g ( z ) u  

Here f and g are C". 
Many physical systems are designed to be con- 

trolled over a certain region. We assume that we will 
only operate the system in the region M where the 
system is linearly controllable, i.e., 

dim span {g ,ad fg , .  . . ,ad;- 'g} = n,  Vz  E M ,  (1) 

(where the ad$g are iterated Lie brackets o f f  and 9). 
We define the characteristic distribution for (f, g )  

D := span {g ,  ad fg ,  . . . , ad;-2g} 

(it is an ( n  - 1)-dimensional smooth distribution by as- 
sumption of linear controllability (1)). We shall call 
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any nowhere vanishing one-form w annihilating V a 
characterzstic one-form of the system (f,g). All the 
characteristic one-forms of (f, g) can be represented as 
multiples of some fixed characteristic one-form W O  by a 
smooth nowhere vanishing function (zero-form) @. Sup- 
pose that there is a nonvanishing @ such that @WO is 
exact, i.e., pwo = da for some smooth function a ( d  
denotes the exterior derivative). Then W O  is called in- 
tegrable and @ is called an integratzng factor for W O .  

Recall that a homotopy operator is an operator H 
mapping &forms to (k - 1)-forms and satisying the ho- 
motopy identitg 

d(H<) + Hd< = C . 

Let be an integral curve of f .  We define a homo- 
topy operator H in a neighborhood of r ] .  The value of 
H acting on a form C at a point x will be defined by 
integrating the form C along a path from a given point 
xo on r ]  (typically, xo will be the initial point of q)  to x 
obtained as follows. Let rIx will be the projection of z 
onto 7 (w.r.t. a fixed Riemannian metric) so that nx is 
the point on r ]  closest to z. We shall denote the geodesic 
distance between points x and y as 1x - yI. We assume 
that x is sufficiently close to r ]  so that the projection 
is well defined. The path of integration from xo to x 
will be obtained by first connecting xo with IIx along r ]  
and then by connecting IIx with x along the projection 
geodesic. I t  is clear that H is a linear mapping (over 
the reals). 

Using a special set of coordinates around r ] ,  we 
can give a simple formula for action of the homo- 
topy operator H on a one-form <. Suppose that 
2 = (21, . . . , x,) are coordinates such that f = 2- &x 1 

on q and such that the projection onto r ]  is given by 
(x~,xz,. . .,x,) I-+ ( I C I , ~ ,  . . . , O )  E q. For convenience, 
we write x = Cj”=, zjej  where el = (1,0,  . . . , 0)) etc. 
Taking the distinguished point zo to be the origin, we 
see that H< with ((z) = Cy=l <i(x)dxi is given by 

Lemma 1..1 On q 

for any one-form < defined on a neighborhood of r ] .  

Proof: Differentiating (2) we see that 

where h ( x )  = ( H < ) ( x ) .  The result follows since all 
expressions are coordinate independent. 0 

~ 
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Let w be any characteristic one-forrn of ( f , g )  and 
define wj := L~;’w and 

(3) 

2, := H w ,  = H L ; - L .  

It is easy to see that the mapping Qp : 3’ t-+ z provides 
a valid coordinate change in a neighborhood of r ]  when 
the system is linearly controllable: 

Proposition 1 . 2  Suppose that ( f ,g)  7s linearly con- 
trollable. Then, the differentzals dzj ,  i = 1, . . . , n,  are 
lznearly dependen t  on r ] .  

Proof: 
independence follows from linear controllability. 

By Lemma 1..1, dzi = L”f-lw on q. Linear 
0 

In z coordinates, the system ( f , g )  has the form 

Z n - 1  = z ,  + 1Cin-1(2) + Q,-l(Z)U 

i n  = p(x )++)u  + &(x) t &(x)u 
(4) 

Recall that a function x I+ X(x) is higher order at 
xo if X together with all its first derivatives vanish at 
xo. Analogously, given a smooth maniibld N ,  we say 
that a function X is higher order on N if X and all its 
first derivatives vanish on N .  Similarly, X is order p on 
JV if X and all derivatives up to order p - 1 vanish on 
N .  For example, the function x I-+ xlxz is higher order 
on N = {x E R2 : 22 = O}. 

Proposition 1..3 The functions +i, i = 1,. . . , n,  are 
higher order on r ]  and the functions Oil a’ = 1, , . . , n, are 
a t  least first order on r ] .  

Proof: Using the homotopy identity, one obtains wi = 
Li-lw = dzi + t i ,  i = 1,. . . , n, where 6% := Hdwi. Since 
E ,  = 0 on q (Lemma 1.. 1) , we see that Lj  c; also vanishes 
on r ]  since f is tangent to q. Therefore I c i )  and ll;fciI 
grow at most linearly as functions of Ix -- nx l .  

Now, for i = 1. .  . , n, we have 1Cii = L f z ;  - z;+l = 

f 

L f  zi - Hwi+l = L /  - H L f w i  = L ~ z ,  - H L f  (dza.+c,) = 
L f ~ j  - H d L f z i  - H L f c j  = L j z i  - L f y  - H L f E i  = 
- H L f c i .  Since ILf E i I  grows at most linearly as a func- 
tion of ( x - l l x l ,  we see that I$il = I - H L f c j I  grows at 
most quadratically as a function of 12 - rIxl. 

Also, since Oi = Lgzi = i,dzi = ig(u% - c j )  = - i g t i  
for i = 1, . . . , n,  we see that grows at, most linearly 
as a function of 12 - rIx1. Here is< is the contraction of 
a vector field g with a form 6. a 

When (f, g) is feedback linearizable, one can choose 
w to be integrable. In this case, the error one-forms ci 
vanish so that the lcli and 8i terms will be zero. 



If the system is close to being linearizable, one can 
find a characteristic one-form w that is close to being 
integrable together with some derivatives (for instance, 
by constructing higher order least-squares integrating 
factors). In this case some number of derivatives of the 
error one-forms Q will be small near q so that the error 
terms $i and Bi will also be small near 77. 

Since the functions $i, are higher order on q and 
the functions B i ,  are first order on q, the system 

il =: 22 

(5) 
Zn-1 =: z, 
in =: p ( z ) + r ( z ) u  

approximates (f, g )  to first order on Q. Of course, when 
(f, 9 )  is close to linearizable, the approximation error 
(on a neighborhood of '7) will be small. Furthermore, 
the approximate system (5) is differentially flat with 
flat output y = z1 and input to state linearizable (use 
21 = (. - p ( 2 ) ) / r ( x ) ) .  

2. Stability and Continuity Properties 
We can easily stabilize the trajectory q of the orig- 

inal system using this atpproximation. First, let E d ( t ) ,  

t 2 0, be a c1 desired trajectory satisfying &i(t) = 
y y ) ( t ) ,  t 2 0, i = 1,. . . , n ,  for some C" desired (out- 
put) function yd(.). Provided that r((a-l(&(t)))  # 0, 
t 2 0, so that linear conitrollability is never lost, appli- 
cation of the control law 

to the approximate system (5) will provide stable track- 
ing of the desired trajectory &(.). (In (6:), we require 
the coefficients ai to be such that s" + a,s"-l + . . . + 
azs + a1 is a Hurwitz polynomial.) Indeed, the error 
e := z - Ed is governed by the linear dynamics e = Ae 
where A is the appropriate companion matrix. 

Now, suppose that the control (6) is applied to the 
original system (4). In this case, the error dynamics 
becomes 

i = .Ae + w(e ,  t )  
where the perturbation term is given by w = + 021. 
For general &(.) we cannot say much-the system may 
even cease to be well defined in finite time. However, if 
the desired trajectory liives in Q, e.g., &(t) = [z(t) := 
@(q&(zo)), then the error w ( e ,  t )  will be higher order in 
e. Here dt(x) denotes the flow of the system at time t 
starting from the initial condition z. Under reasonable 
conditions that provide uniformity of the error with re- 
spect to time (e.g., a bounded desired trajectory), we 
see that [:(.) would be an exponentially stable trajec- 
tory of the closed loop system (4), (6). We will see 
that this stability property actually allows us to con- 
clude quite a bit about the behavior of the system for 
trajectories near qq 
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Suppose that ( f , g )  and zo are such that the closed 
loop system (4), (6) provides stable tracking of the de- 
sired trajectory .$(.). In this case, the closed loop sys- 
tem defines a mapping 

P : {(Ed(t),idn(t)),t 2 0) ++ {(z( t ) , in( t ) ) , t  2 0) 

for desired trajectories Jd close to <,". For simplicity, 
we shall write z ( . )  = P(<d(.)). 

The mapping P possesses a number of interesting 
properties. First, note that (do(.)  is a fixed point of 
the nonlinear mapping P ,  Second, note that P projects 
approximate trajectories of (f,  g )  onto actual (or exact) 
trajectories of (f, 9). 

To make these ideas precise, we will study some 
continuity properties of a truncated version of the map- 
ping given by 

PT : { (L- i ( t ) , idn( t ) ) , t  E [o,TI)++ {(z( t ) , in( t ) ) , t  E [ o , T I ) .  
We measure the distance between C1 trajectories E ( . )  
and C( e )  according to 

I I~( . )  - <(.)II := tzel I E ( ~ )  - r(t)ln + /En(t)  - in(t))I 

where 1.1" is the Euclidean norm on R" 

Theorem 2..1 Let T > 0 be given and suppose that 
r (&(xo) )  # 0 f o r t  E [O,T]. There exisis positive con- 
stants k and €0 such that 

' IIpT(&(')) - &(')I1 5 l l ( d ( ' )  -<:(*)[Iz 
for all E d ( . )  such that I/&(.) -t:(-)/l < ( 0 .  

Proof: Fix T > 0 and let E O  > 0 be such that ~ ( ( a - ~ ( z ) )  
is nonzero and the projection z ++ ITz is well defined for 
all z such that Iz - <:(t)l < 2 ~ 0  for some t E [0, TI. Let 
E E ( O , E O )  and suppose that I/&(.) -[:(.)I[ < E .  Then, 
defining e ( t )  := z ( t )  -&( t ) ,  we see that, for le(t)l < E ,  

Now, consider the perturbation term w ( e , t )  = $(x) + 
0 ( x ) u ( x , t ) .  We claim that there is a positive IC1 such 
that Iw(e,t)l 5 kl ( le ( t ) l+E)2  for all E E ( O , E O ) .  Since 0 
and I I ,  are first and second order on 77, respectively, we 
need only check that U also exhibits a suitable linear 
growth property. Define a0 := m a q a i  (where the ai 
are the feedback gains given in (6)), 



whenever le(t)l < €0 where k2 := 2kllPI and [PI = 
A m a x ( P ) .  Reducing E O ,  if necessary, so that 3k2Eo < 
1/2,  we obtain 

V ( e ( t ) , t )  5 -$ le ( t ) I2  + k2E21e(t)l 
5 -qle(t)12 - ( I l e ( t ) l  - k2c2)2 + kZc4 
5 -;ile(t)12 + k2c4 . 

We see that V < 0 on t,he set 

2k2c2 < le(t)l < E O  

which is nonempty since 2k2c2 < ~ 0 / 2  < E O .  Further- 
more, since e(0) = 0 (+ V ( e ( 0 ) )  = 0 )  and 

1 
v ( e ( t ) , t )  5 --V(e(t)) + k;c4 , 

4 1 ~ 1  

This result says that we obtain E' tracking of trajec- 
tories that are c close to the manifold (i.e., trajectory) 
about which the approximation is made. Note that the 
guarantee is given over the finite time interval [O,T]. 
Results on an infinite time interval (i.e., stability re- 
sults) can be easily derived using a similar proof when 
appropriate technical conditions (e.g., boundedness and 
uniformity) are postulated. 

In the above proof we see that the Lyapunov dis- 
tance decreases whenever 

These bounds have a simple interpretation. The con- 
stant kl provides a measure of the effect of the nonlin- 
ear terms in a neighborhood of v. The upper bound 
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says that the nonlinear (and time varyiiig) terms $(z) 
and O(z)u(x, t )  may well dominate the stabilizing lin- 
ear term Ae as we get further away from v. The lower 
bound (a sufficient condition) is an indication that the 
desired trajectory &(.) may not be a realizable trajec- 
tory when 1c, and 0 are nonzero. When the system is 
close to being linearizable, an approximation resulting 
in small kl should be possible indicating small tracking 
errors and a large region of attraction. 

3. Application to Trajectory Planning 
Suppose we are interested in finding aggressive tra- 

jectories between the equilibrium points, say 20 and 21. 
Given a trajectory between these points, we can find a 
more aggressive one in the following manner. 

Let xi@), ui(t), t E [O,T], denote the given state 
and control trajectories and let vi denote the manifold 
traced out by xi. We convert the time function ui(t)  
into a state feedback k i ( x )  defined on a neighborhood 
of 7 according to 

k i ( x )  = ui(r(rIx)) 

where ll projects to the nearest point on 17 and T selects 
the time index so that xz (~ ( I Ix ) )  = l l x .  1.n other words, 
ki sets the input to ui( t )  for all x belonging to the plane 
normal to vi at xi(t). Now, define 

f " ( x )  = f ( x )  + g ( x ) k i ( x )  

for x in a neighborhood of vi and note that vi is an 
integral manifold of f" . 

Now, let Hi be the homotopy operator obtained by 
integration along vi (and the projection geodesic) and 
define locally linearizing coordinates 

& = H ~ L ; ; ~ ~  

for k = 1 , .  . . , n. Using these coordinates, we construct 
the stabilizing feedback law and an associated projec- 
tion operator Pi  with fixed point trajtctory G(t)  = 
zi(xi(t)), t E [O,T]. As shown above, the closed loop 
system provides stable approximate tracking of trajec- 
tories near e(.). Let yi(t) = til ( t )  be the current "out- 
put" trajectory. Then y i (a t )  with a > 1 can be used to 
define a more aggressive trajectory. Also, if a is close 
to  one, then such a trajectory will be close to v'. 

We illustrate this idea with an example. Let f = 
22% + sin XI& and g = cos x1 -t &- and con- 
sider the system (f, g ) .  This system is a simplified three 
dimensional version of the cart and pendulum system 
where x1 a.nd x2 are the angle and angular rate of the 
inverted pendulum and $3 is a variable that might rep- 
resent the position or velocity of the cart. We empha- 
size that these are not the dynamics of the cart and 
pendulum system, but rather a dynamics with similar 
qualities and the desirable feature of easy 3D visualiza- 
tion. 

It is easy to check that this system is linearly con- 
trollable when -7r/2 < 2 1  < 7r/2. The one-form 

a a 



w = 2 2  sin x1dx:t - cos x1dx2 + cos2 xldz3 is a char- 
acteristic one-form for ( f ,  9). 

We are interested in finding trajectories from xo = 
(0, 0,O) to $1 = (0, 0 , l )  ,using the above algorithm. The 
results obtained by two iterations of the above algo- 
rithm are presented in Figures 1 and 2. 

tory. This sequence of aggressiveness is illustrated quite 
well in Figure 2 where the outputs reach steady state 
at approximate times of 10, 8.3 and 6.9 seconds. Note 
that the z1 coordinate corresponding to the point xi 
is slightly different for each trajectory since different 
hoinotopy operators are use to define the coordinate 
systems. 

Conclusions 
We have presented an approach for constructing a 

feedback linearizable nonlinear system approximation 
that is valid in the neighborhood of a trajectory. The 
resulting approximation may be used to develop a feed- 
back controller to stabilize the given and neighboring 
trajectories. This fact was exploited to develop a tra- 
jectory planning algorithm for nonlinear systems. 

We also believe that these ideas may be used to 
construct trajectories between arbitrary points in the 
linearly controllable set by use of an iterative continu- 
ation method. 
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