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A requirement for new robotic manipulators is the ability to detect and manipulate objects in their envi-
ronments. Robotic manipulators are highly nonlinear systems, and an accurate mathematical model is
difficult to obtain using conventional techniques. Therefore, an efficient technique is required to deal
with these types of complex and dynamic systems. Differential Evolution (DE) algorithm is a very pow-
erful optimization technique and has become popular in many fields. Arguably, it is now one of the most
predominant stochastic algorithms for real-parameter optimization. However, DE is very sensitive to its
control parameters of the mutation operation (F) and crossover operation (CR) in such a way that their
fine tuning greatly affect DE performance. Fuzzy Adaptive DE (FADE) algorithm is one of the well known
adaptive DE variants that show superiority and reliability in solving different types of optimization prob-
lems. The objective of this article is to develop a new dynamic parameter identification framework to
estimate the barycentric parameters of the CRS A456 robot manipulator based on FADE. The simulation
results presented in this paper show the effectiveness of the FADE method over other conventional tech-
niques, transcending the limits of the existing state-of-the-art algorithms in solving the problem of robot.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

There are many industrial applications where the robot manip-
ulator is required to carry out precise task with high accuracy and
repeatability. Recently, the application of robotic technology in
clinical medicine has been a very active research area. For instance,
in surgical operations the robot manipulator serves as an assistant
to the doctor or as an extension of the doctor capabilities [1,2].
These kinds of advanced robot applications require an accurate
model of the robotic system, which in turn, requires sufficiently
accurate knowledge of the parameters of robot dynamics to be
applied in advanced control system design, preoperative planning,
process supervision, and simulation and training.

Dynamic models of robot arms used in model-based control
schemes are designed in terms of various inertial and friction
parameters that must be either measured directly or determined
experimentally. However, direct measurements of such character-
istics are rather impractical or even impossible in many cases.
Inertial parameters of robot links cannot be measured without
dismantling the robot arm, while highly nonlinear inherent phe-
nomena at robot joints cannot be directly quantified. Therefore,
models describing nonlinear effects such as friction should be
addressed in conjunction with methods of determining parameters
of the dynamic model of the arm based on experiments, in order to
fully identify the dynamic model of the robot arm [3].

There are many traditional methods that have been used for
dealing with dynamic robot parameter identification including
Kalman filter [4] and least square method [5,6]. However, some
model parameters such as link mass and link lengths cannot be
easily measured using these methods especially with the effect
of noise factor, or in other words their measurements relatively dif-
ficult [7]. Moreover, these traditional techniques are relatively
effective for a class of specific issues. For example, the structural
model is reliable but the data has limited accuracy. Furthermore,
they depend on unrealistic assumptions that models must be
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unimodal, continuous and derivable. These methods sometimes
converge slowly, and sometimes at local optimum, or even not at
all.

Recently, there have been intelligent proposed methods for esti-
mation based on the use of universal approximations such as fuzzy
logic and neural network methodologies. These methods seem to
be very attractive because in the ideal case they allow the model-
ing of the dynamic effects even ‘bad’-modeled, for example, fric-
tion. In recent years, Evolutionary algorithms such as Genetic
Algorithm (GA), Differential Evolution (DE) and Particle Swarm
Optimization (PSO) have been studied extensively. They have been
used to improve the dexterity of robot manipulators in many fields
such as control, parameter identification, robot design and plan-
ning [8–10]. They have been known to be better suited for noisy,
discontinuous functions because they require no knowledge or
gradient information about the response surface. This ability of
Evolutionary algorithms has encouraged researchers to use these
methods in order to moderate the difficulties of noise and nonlin-
earity that often arise in dynamic models. GAs is better suited for
noisy, discontinuous functions because there is no requirement
for a derivative in the fitness function. Moreover, GAs accumulate
information about the system during the search process, which
makes them more desirable than the traditional numerical
methods [11] through the use of real-coded GA to estimate friction
and torque sensor model parameters. The simulation approach
demonstrates the effectiveness of the GA. By identifying the
parameters, the position tracking error and the velocity tracking
of the joint is enhanced. The performance of GA has been also ana-
lyzed and evaluated in optimizing the precision of kinematic
parameters of the robot manipulator by developing a forward cal-
ibration algorithm which is based on GAs. The main problem for
this approach is to find a good mathematical correction function
and in [12] a suggestion has been made to enhance the accuracy
of the robot manipulator by using some new techniques such as
ANN and Fuzzy Logic technique.

Differential Evolution (DE) Algorithm is a new evolutionary
approach proposed by Storn and Price in 1996 [13,14] to minimize
nonlinear and non-differentiable continuous space functions. Price
and Storn presented this algorithm to optimize a variety of prob-
lems. Similar to GA, it has been applied to various fields success-
fully. So far, there has been no attempt to optimize the design
parameters of manipulator by which performance variations will
be minimal. In [15] a modification in differential evolution optimi-
zation technique is proposed to incorporate the effect of noise in
the optimization process and obtain the optimal design of manip-
ulator, which is insensitive to noise. In this optimization process,
the kinematic and dynamic models of the manipulators are used.
The results indicate that the DE converges quickly with fewer
generations and function evaluations than GA. Hence, fast perfor-
mance of DE indicates that this approach can be a viable optimiza-
tion technique. However, the performance of DE is still sensitive to
its control parameters such as mutation factor (F) and crossover
rate (CR).

Recently, the development of adaptive DE has shown more reli-
able performance than DE with manual settings [16–18]. Fuzzy
Adaptive Differential Evolution algorithm (FADE) is one of the
well-known adaptive DE variants. It is implemented by applying
a mechanism in which the crossover and the mutation control
parameters (F and CR) are both adaptive using fuzzy logic-based
controllers; the input signal for the fuzzy system has been calcu-
lated from the population mean square diversity. In this algorithm,
Fuzzy system plays a key role in updating the control parameters
of DE as well as increasing the convergence rate.

In this paper, the application of FADE algorithm is proposed to
estimate the barycentric parameters of the CRS A456 robot manip-
ulator. This algorithm is used to off-line estimate the optimal
parameters of the inverse dynamic model of the CRS A465 robot
arm, which are expected to be insensitive to noise.

This paper is organized as follow. The detailed description of the
CRS A465 robot arm and its barycentric parameters are presented in
Section 2. The complete steps and structure of FADE algorithm is
described in Section 3. Results and discussion of applying FADE
algorithm as an estimator of the CRS A465 robot arm barycentric
parameters is presented in Section 4. Section 5 concludes the paper.

2. Dynamic model of the CRS A456 robot manipulator

The CRS A465 arm considered in this work is used as a slave
robot in a research cell for orthopedic robot-assisted surgery (see
Fig. 1).

In this application, the end effector of the arm carries the surgi-
cal tool – the ‘‘drilling/machining tool’’. Due to the symmetry of the
drilling tool, only five degrees of freedom is required. Therefore,
only the first five joints of the arm are considered to be the subject
for the modeling task in this work.

The equation of motion for the robot is developed using the L–E
formulation. The L–E is non-recursive method that allows the
development of the robot model using a set of equations derived
from the energy model [19]. Based on this formulation the torque
acting on any joint axis is:

si ¼
XN

j¼1

Dijðq;vÞ€qþ
XN

j¼1

XN

k¼1

Hijkðq;vÞ _qj _qk þ Giðq;vÞ þ sfi ð1Þ

where si is the torque acting on joint i, i = 1,2. . .N, N is the number of
degrees of freedom, q; _q; €q are the position, velocity and acceleration
of robot joints, respectively, v is the model parameters, Dij is the
effective and coupling inertia, Hijk is the centripetal and Coriolis
effect, Gi is the Gravity loading, and sfi is the joint friction.

The details of the coefficients Dij and Hijk is given in [19] through
examination of Eq. (1) shows that the equation of motion is linear
in the robot physical parameters, that is the mass, center of gravity
locations moments and products of inertia of each link see Fig. 2.

The terms of the equation of motion given in Eq. (1) are linear in
the model parameters v that are the mass, center of gravity loca-
tions moments and products of inertia of each link. Therefore it
can be written in:

s ¼ U q; _q; €qð Þv ð2Þ

where s is the torque vector, Uðq; _q; €qÞ represents an (N � R) obser-
vation matrix, and the R- length vector v, contains the effective
inertial parameters of the manipulator grouped in the barycentric
or base parameters. The identification ‘‘observation’’ matrix
Uðq; _q; €qÞ depends on the joint angles, velocities, and accelerations.
The barycentric parameters of a link are combinations of its inertial
parameters and its descendants in the kinematic chain [21]. The
categorization and grouping of the barycentric parameters is done
symbolically or by applying a set of rules. Normally, special
computer programs are developed for automatic generation of the
symbolic model and the associated barycentric parameters. For
the CRS A465 the set of the barycentric parameters v are given [20].

In this study, in order to make a clear comparison among the
estimation methods, the problem is simplified to consider only a
single joint arm of the CRS A465 to estimate its parameters. The
CRS 465 single joint arm has four parameters ai, i = 1,. . ., 4 to be
identified; they are the inertia, the viscous friction coefficient,
the positive side Coulomb friction, and the negative side Coulomb
friction, respectively. The system equation becomes:

s ¼ av ð3Þ

where s is the torque, and v is the barycentric parameters that have
been reduced to four parameters, they are the angular acceleration



Fig. 1. Structure of a single robotic cell for robot assisted orthopaedic surgery [20].

Fig. 2. Coordinate frame assignment of single joint CRS A465.
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x1, the angular velocity x2, the positive sign of the velocity x3 (=1 if
x2 is positive, 0 otherwise) and the negative sign of the velocity x4

(=1 if x2 is negative, 0 otherwise).

3. Fuzzy adaptive differential evolution algorithm (FADE)

In this algorithm [16], a fuzzy logic control (FLC) has been uti-
lized for controlling the mutation factor F and the crossover rate
CR of DE, whereby a fuzzy knowledge-based system is used to
update the control parameters on-line, in a dynamic adaptive man-
ner to the inconsistent situation. This algorithm had first been pro-
posed to solve two major problems in DE: premature convergence
and stagnation. These problems often arise when using DE or any
other optimization method, because the control parameter values
of these methods are sometimes not initially well tuned for the
problem in hand and having no knowledge about the population’s
information. The general steps of FADE are as follows:

3.1. Initialization

The initial population is fed with candidate solutions using the
standard equation:

xt¼0
i;j ¼ Xmin;j þ ai;j Xmax;j � Xmin;j

� �
ð4Þ
where Xmin and Xmax are the lower and upper bound of the param-
eter values which are specified to define the domain from which the
values, xt

i;j; j 2 1; . . . ;Df g of each Np vector in this initial population
are chosen. ai,j is a random number generator that returns a uni-
formly distributed random number within the range [0,1).

3.2. Mutation

The standard DE/rand/1 mechanism has been used to produce

the mutant vector Vi tð Þ ¼ v t
i;1;v t

i;2; . . . ;v t
i;D

n o
. This operation is

applied by differentiating multiple randomly selected members,
r1 and r2 2 1;2; . . . ;Npf g, of the current population. These indices
should be mutually different and also different from the current
index i. A parameter called scaling factor, F is then multiplied by
the difference value ðxt

r1
� xt

r2
Þ to control the amplification of the

differential variation. The standard mutation equation is as
follows:

v tþ1
i ¼ xt

r1
þ F � ðxt

r2
� xt

r3
Þ; ð5Þ

1 � i – r1 – r2 – r3 � Np
3.3. Crossover

The perturbation operation known as the binomial crossover
(bin) comes into play, as illustrated in Eq. (3), to deliver the so-

called trial vector Ui tð Þ ¼ ut
i;1;u

t
i;2; . . . ;ut

i;D

n o
. In this interpretation

a user-specified real parameter value known as crossover probabil-
ity or crossover rate, CR is used to control the mixing process. Then,
a component from the donor vector v t

i;j is transferred with proba-
bility CR to the offspring ut

i;j, and with probability 1 � CR from

the target vector xt
i;j.

DE=x=y=bin ut
i;j ¼

v t
i;j ðbi;j � CRÞ or ðj ¼ jrandÞ

xt
i;j otherwise j ¼ 1;2; . . . ;D

(
ð6Þ

where bi,j is a real number uniformly generated in the range [0,1].
jrand is a randomly generated integer in the range [1, D] and ensures
that the trial vector Ui(t) will differ from its corresponding target
vector Xi(t) by at least one component.



Table 1
Membership functions.

Inputs, Outputs Membership functions

D1 S(D1) = fg(D1, 0.25, 0.05)
M(D1) = fg(D1, 0.25, 0.5)
B(D1) = fg(D1, 0.25, 0.9)

D2 S(D2) = fg(D2, 0.5, 0.1)
M(D2) = fg(D2, 0.5, 0.8)
B(D2) = fg(D2, 0.5, 1.5)

D3 S(D3) = fg(D3, 0.35, 0.1)
M(D3) = fg(D3, 0.35, 0.5)
B(D3) = fg(D3, 0.35, 0.9)

D4 S(D4) = fg(D3, 0.5, 0.1)
M(D4) = fg(D4, 0.5, 0.8)
B(D4) = fg(D4, 0.5,1.5)

F S(F) = fg(F, 0.5, 0.3)
M(F) = fg(F, 0.5, 0.6)
B(F) = fg(F, 0.5, 0.9)

CR S(CR) = fg(CR, 0.35, 0.4)
M(CR) = fg(CR, 0.35, 0.7)
B(CR) = fg(CR, 0.35, 1.0)

Note: fg = Gaussian curve membership function.
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3.4. Selection

Then, one-to-one greedy selection operation is used to decide
whether the trial vector Ui(t) would win the competition against
its corresponding target vector Xi(t). The winner becomes a mem-
ber in the population Xi(t + 1) of the next generation. This compe-
tition is normally based on the evaluation of the fitness function of
both individuals.

Xtþ1
i ¼ Ut

i if f ðUt
i Þ � f ðXt

i Þ
Xt

i otherwise

(
ð7Þ

3.5. Algorithm’s control parameters adaptation

The control parameter values of FADE respond to the population’s
information, i.e., function values or population diversity (FC), param-
eter vectors (PC), and their updates after tth generations. Two FLC
systems are used as the basis a fuzzy control mechanism. The main
adaptation steps of FADE algorithm can be encapsulated as follows:

� Step1 (Initialization): The values of FC and PC are calculated
and then used as input to the FLCs as in Eqs. (8) and (9),
and the values of the control parameters (i.e. F and CR) are
the outputs.

PC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NP

PNP
i¼1

PD
j¼1 xt

i;j � xt�1
i;j

� �2
r

FC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NP

PNP
i¼1ðf

t
i � xt�1

i Þ
2

q
9>>=
>>; ð8Þ

D1 ¼ 1� 1þ PCð Þ � e�PC

D2 ¼ 1� 1þ FCð Þ � e�FC

D3 ¼ 2 � ð1� ð1þ PCÞ � e�PC

D4 ¼ 2 � ð1� ð1þ FCÞ � e�FC

9>>>=
>>>;

ð9Þ

where PC is the parameter vector change in magnitude and
is transformed into the range of [0,1] as D1 and the range
of [0,2] as D3; FC is the function value change and is trans-
formed into [0,1] as D2 and [0,2] as D4; f t

i is the ith compo-
nent of the function value vector for the tth generation,
i = 1, 2, . . .,NP; xt

i;j is the component in the ith row and jth col-
umn of the parameter matrix XNP�D for the tth generation,
i = 1,2, . . .,NP, j = 1,2, . . .,D; t is the generation index; NP and
D represent the population size and dimensionality of the
problem, respectively (see Table 1).

� Step2 (Fuzzification): The values of F and CR are assigned to
the fuzzy sets membership functions. These membership
functions have been stated by Liu and Lampinen [16], based
on their empirical study. Fig. 3(a–d) represents four fuzzy
membership functions for input variables D1, D2, D3, and
D4. Fig. 3(e and f) shows fuzzy membership functions for out-
put variables F and CR.

� Step3 (Rule Base): IF-THEN fuzzy rules statements, the most
useful method in modeling complex systems, are used to
formulate the conditional statements that comprise fuzzy
logic. There are 9 � 2 rules as shown in Table 2 that com-
prise the fuzzy logic. Each of the variables (D1, D2, D3, D4,
F, CR) has a corresponding fuzzy membership function with
3 fuzzy subsets, where S is ‘‘small’’, M is ‘‘middle’’ and B is
‘‘big’’ as illustrated in Table 2. Fig. 4 shows the fuzzy deci-
sion surfaces for all combinations of the inputs and outputs.
These surfaces are nonlinear and monolithic surfaces and
represent fuzzy decision surfaces for given inputs.

� Step4 (Fuzzy Inference Engine): Madmani’s fuzzy inference
method [22] is used as the fuzzy control strategy. It is the
most commonly used fuzzy simulation methodology. In this
method the fuzzy control strategy is used to map from the
given inputs through the rules to an output (fuzzy sets).
These fuzzy sets are then collected into one fuzzy set.

� Step5 (Defuzzification): The defuzzification process is held to
map from a space of fuzzy output into a space of real output.
The input is the collected fuzzy set and the output is a single
value. There are many types of defuzzification strategies. In
FADE the centroid defuzzification technique was selected
(CDT), i.e., the center of gravity of the fuzzy control.

4. Results and discussion

The kinematic and dynamic models of manipulators are nonlin-
ear and coupled. Thus, explicit modeling of noises will make
dynamic modal complex. To overcome this problem the fuzzy
adaptive Differential Evolution (FADE) has been utilized for
improving the parameter estimation of the robot manipulator
and to deliver minimum performance variation. As a case study,
the single joint arm model of the CRS A465 is considered. The
CRS 465 single joint arm has A = 4 parameters to be estimated, as
discussed in Section 2. In the simulation, a1 is the inertia, a2 is
the viscous friction coefficient, a3 is the positive side Coulomb fric-
tion, and a4 is the negative side Coulomb friction.

To develop the new dynamic parameter identification frame-
work based on FADE, attention has to be paid to the following set-
ting points that characterize the FADE algorithm as well as the
standard DE algorithm to the robot application:

� Individual (solution encoding) and Population representation:
A population with popsize (NP = 30) of individuals, refers to
the number of individuals at each generation. First, we have
to encode the necessary information required for the
parameter estimation in the individual structure. Each indi-
vidual should represent a complete solution to the problem
at hand. In our application the individual is a vector of 4
real-coded parameters known as solution parameters.

� Parameter control: The control parameters that are going to
be considered are the mutation factor, F and the crossover
rate, CR. In the standard DE/rand/1/bin, these parameters
have been set to 0.5 and 0.9, respectively. In FADE these
parameters undergo evolution via the fuzzy adaptation sys-
tem, FLC, in such a way that better values of these parame-



(a) (b)

(c) (d)

(e) (f)

Fig. 3. Fuzzy membership function for the input and the output variables. (a) D1, (b) D2, (c) D3, (d) D4, (e) F and (f) CR.

Table 2
The fuzzy rules.

Rules Fuzzy sets

D1 or D2 D3 or D4 F or CR

1 S S S
2 S M M
3 S B B
4 M S M
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ters would lead to better individuals which in turn are more
likely to survive and produce offspring and hence propagate
these better parameter values to the next generation.

� Individual evaluation (solution validation): The definition of
the fitness function is crucially important for a successful
application. In this work, we have to evaluate the fitness
of each individual based on the mean square error (MSE)
of the estimated model, as in Eq. (10).
5 M M M
6 M B B
7 B S B
8 B M B
9 B B B

Note: S = small; M = medium; B = big.
MSE ¼
Xn

i¼1

si � ŝið Þ2 ð10Þ

where s represents the measured torque in our application
and ŝ is the estimated torque using the DE and FADE algo-
rithms. n is the dimension of s vector.

� Stopping criteria: The most common stopping condition used
in literature is to allow the algorithm to run to a maximum
number of iterations. A small number of iterations may not
give the algorithm enough time to reach an optimum espe-
cially when the size of the search space is large. On the other
hand, a very large number of iterations may be unnecessary
because there can no further gain once the optimum solu-
tion is reached; so, the number of iterations for the standard
DE and FADE is set at 100.
In this comparison the ordinary least square (OLS) identification
method (see Eq. (11)) has also been included to estimate the
unknown parameters XOLS by minimizing the sum of the squared
error between the actual torque s and the predicted torque UXOLS ,
as follows:

XOLS ¼ ð/T/Þ�1
/Ts ð11Þ

Using the aforementioned methods and their corresponding
settings the barycentric parameters of the CRS 465 single joint



(a) Output Surface-Inputs: , -Output: (b) Output Surface-Inputs: , -Output: 

(c) Output Surface-Inputs: , -Output: (d) Output Surface-Inputs: , -Output: 
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Fig. 4. Fuzzy decision surfaces for all combinations of the inputs and outputs.

Table 3
Barycentric parameters estimation of the single joint CRS A465 robot arm.

Single joint parameters OLS Standard DE FADE

a1 0.0036 0.0037 0.0038
a2 0.0164 0.0143 0.0169
a3 0.0089 0.0594 0.0112
a4 �0.2582 �0.3060 �0.2261

Table 4
Mean square error and standard deviation of the estimation methods for the
estimated model.

OLS Standard DE FADE
MSE (Std Dev) MSE (Std Dev) MSE (Std Dev)

9.259E�02 8.872E�02 5.233E�02
(2.099E+00) (1.415E+00) (1.380E+00)
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arm are estimated. The results of the three estimation techniques
are presented in Table 3. These results have been averaged over
30-independent runs.

A clear comparison among these methods is presented in
Table 4 which illustrates the mean square error and the standard
deviation of the prediction error. From the same table it can be
observed that the FADE could outperform the OLS and the standard
DE for both values. This is so because FADE updates the values of
the control parameters each generation and this change can deal
with difficult problems such as noise.

Fig. 5 depicts the different behavior of F and CR values during
the 100 generations due to the population information. The plot
of the figure shows a significant high fluctuation at the early stages
of the run then begins to stabilize due to stability in the population.
This change in F and CR values helps FADE to escape from the local
optimums generated by the noisy components in the dataset.

The distinct performance of the FADE in comparison with the
standard DE and the OLS is further proved in the torque prediction,
as depicted in Fig. 6.

From this figure, and based on the barycentric parameters, it is
worth noting that the standard DE and FADE are both nearer to the
measured torque than the OLS. The difference is clearer in the
accuracy of the model as already presented in Table 4. However,
the difference between the standard DE and FADE performance
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plot will be more significant as the number of the estimated
parameters is increased.

5. Conclusion

In this paper, the fuzzy adaptive differential evolution algo-
rithm (FADE) is utilized to estimate the barycentric parameters
of single joint CRS A465 robot arm dynamics. In this method the
values of the control parameters F and CR are adapted using fuzzy
logic control. The main advantages of the fuzzy scheme in this
approach are: computationally efficient, and well-adaptable with
optimization techniques. FADE is not only a simple approach in
comparison with other adaptive DE variants, but is also reliable
and easy to be implemented in real time applications such as robot
system identification.

The barycentric parameters of a single joint CRS A465 robot are
also estimated using OLS and the standard DE, and the experimen-
tal results suggest that fuzzy adaptive DE provides better overall
performance than the ordinary least square method and the stan-
dard DE with fixed parameters. However, in order to further inves-
tigate the performance of the FADE as an estimator technique and
any possible shortcomings, further work is considered to increase
the number of joints of the robot arm which in turn will increase
the number of parameters of the predicted model.
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