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Abstract

The class imbalance problems have been reported to severely hinder classification performance of many standard

learning algorithms, and have attracted a great deal of attention from researchers of different fields. Therefore, a

number of methods, such as sampling methods, cost-sensitive learning methods, and bagging and boosting based en-

semble methods, have been proposed to solve these problems. However, these conventional class imbalance handling

methods might suffer from the loss of potentially useful information, unexpected mistakes or increasing the likelihood

of overfitting because they may alter the original data distribution. Thus we propose a novel ensemble method, which

firstly converts an imbalanced data set into multiple balanced ones and then builds a number of classifiers on these

multiple data with a specific classification algorithm. Finally, the classification results of these classifiers for new data

are combined by a specific ensemble rule. In the empirical study, different class imbalance data handling methods

including three conventional sampling methods, one cost-sensitive learning method, six Bagging and Boosting based

ensemble methods, our previous method EM1vs1 and two fuzzy-rule based classification methods were compared

with our method. The experimental results on 46 imbalanced data sets show that our proposed method is usually

superior to the conventional imbalance data handling methods when solving the highly imbalanced problems.

Keywords: Imbalanced data, classification, ensemble learning

1. Introduction

Class imbalance data refers to at least one of its classes is usually outnumbered by the other classes. The class

imbalance problems have been reported to occur in a wide variety of real-world domains, such as facial age estimation

[1], detecting oil spills from satellite images [2], anomaly detection [3], identifying fraudulent credit card transactions

[4], software defect prediction [5], and image annotation [6]. Therefore, researchers have paid much attention to the

class imbalance problems, and several thematic workshops and conferences were held, such as the Association for the

Advancement of Artificial Intelligence (AAAI) 2000 [7], the International Conference on Machine Learning (ICML)

2003 [8], and the ACM Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD) Explorations

2004 [9].
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For a binary class imbalance problem, the instances are usually categorized into majority and minority classes.

Generally speaking, the minority class usually represents a concept with greater interest than the majority class.

However, it is often outnumbered by the majority class, and sometimes this scenario may be very severe. As most

traditional classification algorithms, such as decision trees [10, 11, 12], k-nearest neighbors [13, 14], and RIPPER

[15, 16], tend to generate models which maximize the overall classification accuracy, and the minority class is usually

ignored [17, 18, 19]. For example, for a data set where only 1% of the instances belong to the minority class, even if a

model classifies all instances as the majority class, it still achieves an overall accuracy of 99%. However, the minority

class instances, which we want to accurately classify, are all misclassified by this model though it achieves a very

high accuracy. Therefore, a number of methods have been proposed to deal with the imbalanced binary classification

problems.

One of the most popular methods for solving the class imbalance problems is sampling [20, 21, 22, 23]. However,

the most used under-sampling and over-sampling methods alter the original class distribution of imbalanced data

by eliminating the majority class instances or increasing the minority class instances. In addition, cost-sensitive

learning is also employed to solve the class imbalance problems [24, 25, 26]. This method assigns different cost of

misclassification errors for different classes, generally high cost for the minority class and low cost for the majority

class as the minority class is usually more interesting. Moreover, Bagging [27] and Boosting [28] based ensemble

methods are another widely used methods to deal with imbalanced problems [15, 16, 29, 30].

We argue that the above mentioned methods might encounter some unexpected problems when employed to solve

the class imbalance problems. For instance, under-sampling methods might abandon some potentially useful data

which could be very important for a learning process, while over-sampling methods may increase the likelihood of

overfitting in the induction process. Furthermore, Bagging and Boosting based ensemble methods may eliminate some

useful data as they use sampling methods to obtain balanced data in each of their iteration procedure, and they may

suffer from overfitting as well. In a word, these two kinds of methods both may alter the original class distribution

of imbalanced data by adding minority class instances or deleting majority class instances. Moreover, for the cost-

sensitive learning methods, it is difficult to obtain the accurate misclassification cost, and the different misclassification

cost might result in different induction results. So the classification results are not stable.

This paper introduces a novel ensemble method for addressing binary-class imbalance problems. Our proposed

method handles the class imbalance problems by converting a imbalanced binary learning process into multiple bal-

anced learning processes, which does not make use of introducing minority class instances or removing majority

class instances to get away from the imbalanced data. The proposed method firstly converts the imbalanced data

into multiple balanced data using the data balancing methods random splitting (SplitBal) or clustering (ClusterBal).

Then multiple classifiers could be built from these balanced data with a specific classification algorithm. Finally, we

use a specific ensemble rule to combine the classification results of these classifiers for the new data. Five ensemble

rules Max, Min, Product, Majority Vote, and Sum from [31] and another five improved ensemble rules MaxDistance,

MinDistance, ProDistance, MajDistance, and SumDistance proposed by us are studied.
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In the empirical study, the performance of six different types of classification algorithms Naive Bayes [32], C4.5

[33], RIPPER [34], Random Forest [35], SMO [36], and IBK [37] were evaluated over 46 highly imbalanced data

sets. We first studied which ensemble rule performs better for the two data balancing methods ClusterBal and Split-

Bal. The experimental results show that for both of the two data balancing methods, ensemble rule MaxDistance

performs better than other nine ensemble rules. Then we studied which combination of data balancing method and

ensemble rule performs better with these six classification algorithms, and found that the two best combinations Clus-

terBal+MaxDistance and SplitBal+MaxDistance perform differently for different classification algorithms. After that,

we compared our method with the conventional external imbalance data handling methods, including random under-

sampling [11], random over-sampling [11], SMOTE [22], MetaCost [38], Bagging [27], Boosting [28], EasyEnsemble

[19], SMOTEBoost [15], RUSBoost [16], UnderBagging [39] and our previous method EM1vs1 [40] which deals with

the class imbalance problems in software defect prediction. Finally we compared our method with two representative

internal imbalance data handling methods Chi3-GTS and Chi5-GTS [41]. The experimental results show that our

method is usually more effective than these conventional external and internal imbalance data handling methods over

the 46 highly imbalanced data sets.

The remainder part of this paper is organized as follows: Section 2 introduces the related work. In Section 3, we

present our proposed method. Section 4 is devoted to the experiments, discusses the detailed experimental setup and

analyzes the corresponding results. Finally, in Section 5 we make our concluding remarks.

2. Related work

The imbalance problem is one of the top 10 challenging problems in data mining [42]. It occurs in many real-

world domains [40, 43, 44], and has drawn a significant amount of attention in the fields of data mining and machine

learning. Apart from the class imbalance characteristic, there might be other data characteristics that could affect the

performance of traditional classification algorithms for imbalanced problems [45, 46, 47], such as dataset shift [48],

class overlapping [49], small disjuncts [50]. However, in this study we focus on handling the class imbalance charac-

teristic as it is the primary and intuitive data characteristic in imbalanced data, and other unintuitive data characteristics

that may affect the performance of imbalanced data learning will be our future study.

Up to now, a variety of methods has been proposed for dealing with class imbalance problems. These methods

can be broadly divided into two categories, namely external methods and internal methods [51]. Internal methods

modify existing classification algorithms for reducing their sensitiveness to class imbalance [41, 52, 53, 54], while

external methods preprocess the training data to make them balanced. As the external methods have the advantage

of independence on the underlying classification algorithms and our method could be regarded as a kind of external

method, in this section we will pay more attention to the external methods, including the sampling methods [11, 13,

21, 55, 56, 57, 58, 59], Bagging and Boosting based ensemble methods [16, 19, 60, 61, 62, 63, 64], cost-sensitive

learning methods [18, 24, 25, 26, 65, 66].
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Sampling methods, which are employed to balance class distribution in imbalanced data sets, can be divided into

two groups: under-sampling and over-sampling. The under-sampling methods eliminate the majority class instances

while the over-sampling methods increase the minority class instances for the purpose of obtaining a desirable rate of

class distribution. Japkowicz [55] mainly discussed two strategies: under-sampling and resampling. She noted that

both the sampling approaches were effective, and furthermore she also observed that using the sophisticated sampling

techniques does not provide any clear advantage in solving the class imbalance problem. Moreover, Mani [13] also

indicated that the random under-sampling strategy usually outperformed some other complicated under-sampling

strategies. Kubat et al. [56] proposed a heuristic under-sampling strategy named One-Sided Selection for eliminating

the majority class instances that are either borderline or noisy. In addition to the under-sampling strategies, the over-

sampling strategies are also widely used for dealing with the class imbalance problem. Chawla et al. [22] proposed an

over-sampling approach in which the minority class is over-sampled by creating “synthetic” instances rather than by

over-sampling with replacement. Han et al. [67] proposed the borderline-SMOTE to over-sample the minority class

instances near the bordline. Batista et al. [11] and Xie at al. [68] both showed that over-sampling usually perform

better than under-sampling. Estabrooks et al. [58] and Barandela et al. [69] both suggested that a combination of over-

sampling and under-sampling might be more effective to solve the class imbalance problem. However, we argue that

the sampling methods alter the original data class distribution of imbalanced data and then lead to some unexpected

mistakes. For example, over-sampling might lead to overfitting and under-sampling may drop some potentially useful

information.

Apart from the sampling strategies, Bagging and Boosting based ensemble methods have also been widely ap-

plied to the class imbalance problem. Seiffert et al. [63] conducted a comprehensive study comparing sampling

methods with boosting for improving the performance of decision trees model built for identifying the software de-

fective modules. Their results showed that sampling methods were effective in improving the performance of such

models while boosting outperformed even the best data sampling methods. Chawla et al. [15] proposed a novel ap-

proach SMOTEBoost for learning from imbalanced datasets on the basis of the SMOTE algorithm and the boosting

procedure. Seiffert et al. [16] presented a different hybrid ensemble methods named RUSBoost, which combined

the random under-sampling strategy with the boosting procedure. Their empirical results showed that RUSBoost

performed comparably to SMOTEBoost while being a faster and simpler technique. Liu et al. [19] proposed the

EasyEnsemble method which combines bagging, random under-sampling and AdaBoost [28]. However, we argue

that for each iteration of original bagging and boosting methods, it may still suffer from the class imbalance problem

as the sampled subset in a given iteration has the similar class distribution with the original data set. In addition, for

the Bagging and Boosting based ensemble methods which usually combine the sampling methods with Bagging and

Boosting procedure, they may alter the original data class distribution as they use sampling methods to increase the

minority instances or eliminate the majority class instances.

Changing class distribution is not the only way to improve classifier performance when learning from the im-

balanced data. A different approach to handling the class imbalance problem is to define fixed and unequal mis-
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classification costs between classes. Generally, data mining and machine learning algorithms assume that all errors

in classification are equally important. However, the cost of misclassification errors is often higher when the errors

are associated with the minority class in contrast with the majority class. Thus the cost-sensitive learning algorithm

focuses on the costs associated with the misclassified instances [70]. Weiss et al. [24] found that the cost-sensitive

learning method performs as well as under-sampling and over-sampling methods and additionally they found that no

sampling method is a clear winner over the other. Seiffert et al. [26] conducted an empirical study for comparing four

data sampling methods and two cost-sensitive learning strategies. However, they noted that random under-sampling

method tended to perform best of all the used methods. Ting [65] proposed an instance-weighting method to construct

cost-sensitive trees. He concluded that the proposed method was simpler and more effective. Furthermore, another

conventional cost-sensitive learning method is the Metacost algorithm [38], which employs bagging to determine opti-

mal class labels for training data, relabeling instances accordingly. However, it may be quite difficult to determine the

accurate misclassification cost when applying the cost-sensitive learning method to solve the imbalanced problems.

All these three kinds of external methods mentioned above deal with the class imbalance data characteristic in the

imbalanced problem. Our proposed method addresses the potential shortcomings of these conventional imbalance data

handling methods mentioned above by converting the imbalanced binary problem into multiple balanced problems

that no longer suffer from the class-imbalance curse and does not alter the original data class distribution, thus it

is quite different from the conventional imbalance data handling methods. In addition, the newly proposed method

differs greatly from our previous ensemble method EM1vs1 for solving the class imbalance problem in software defect

prediction [40]. EM1vs1 firstly splits the majority class into several non-overlapping subsets and each subset is then

assigned a new class label, which has the similar number of instances to the minority class. Thus the imbalanced

binary-class data is converted into balanced multi-class data. Then we use a popular coding scheme one-against-one

[71] to learn the multi-class data by building individual classifier for each pair of classes. Finally the classification

results of all the built classifiers are combined with the Hastie and Tibshirani’s method [72]. Thus EM1vs1 and

the newly proposed method are two different problem solution schemes: EM1vs1 turns the imbalanced binary-class

learning problem into balanced multi-class learning problem while the newly proposed method turns the imbalanced

binary-class learning problem into multiple balanced binary-class learning problems.

3. Proposed method

3.1. Overview of the method

Many traditional classification algorithms have shown poor performance for the class imbalance problems [11,

13, 16]. The classifiers built with these algorithms for such problems usually ignore the minority class as these

classification algorithms tend to maximize the overall classification accuracy [10, 18]. Thus they may be inaccurate

for the class imbalance problems. Bagging is a kind of ensemble learning method that could solve this problem as

the ensemble learning could improve the performance if base classifiers are accurate and diverse [27]. However, for
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each base classifier in the Bagging, it is also inaccurate as it still deals with the class imbalance data which is sampled

proportionally from the original imbalanced data. Thus, some special sampling methods are combined with Bagging

to solve this problem, including UnderBagging [39], OverBagging and SMOTEBagging [73]. These Bagging based

methods first use sampling to balance data for each base classifier, and then combine the classification results of these

base classifiers with specific ensemble rules. However, these Bagging based methods may suffer from the problems

that sampling methods always encounter, such as altering the original data distribution and overfitting. Furthermore

their ensemble rules usually lose sight of the relationship between new data and historical data. That is, new data can

be more closer to a specific class of historical data in spatial distribution. Therefore for the purpose of overcoming the

shortcomings of these Bagging based ensemble methods, we propose a new ensemble method for dealing with class

imbalance problems.

Our proposed ensemble method addresses a class imbalance problem by converting it into several balanced prob-

lems, which includes three components: Data Balancing, Modeling and Classifying. Fig. 1 shows the details.

Data 
Balancing

Classifier1

Classification
Results

Imbalanced 
Data

Balanced
Data2

Balanced 
Data1

Balanced 
DataK-1

Balanced 
DataK

Modeling

Ensemble
Classifier

Classifying
New Data

ModelingModelingModeling

ClassifierKClassifierK-1Classifier2

Figure 1: Proposed ensemble method for handling imbalanced data

In our method, the majority class instances are firstly divided into several bins. Each bin has the similar number of

instances to that of the minority class, and is combined with the instances of minority class. So several balanced data

sets are obtained (Data Balancing). Afterwards, each balanced data set is employed to build a binary classifier with

a specific learning algorithm (Modeling). Finally, these binary classifiers are combined into an ensemble classifier

to classify new data (Classifying). Since the Modeling component is nothing but directly apply a specific classifica-

tion algorithm to each of the balanced data, we will particularly introduce the two components Data Balancing and
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Classifying in the following sections.

3.2. Data Balancing

Imbalanced binary data has been certified to jeopardize the traditional classification learning algorithms, and the

minority class is usually misclassified by such classification models [58]. Thus methods to balance the skewed data,

such as under-sampling and over-sampling, have been seriously taken into consideration. However, under-sampling

may drop some potentially useful information [74] while over-sampling is likely to lead overfitting [69]. Therefore, it

is reasonable to convert imbalanced data into several balanced ones without introducing extra information or removing

the original information.

As is known to all, in an imbalanced data set, the majority class instances usually outnumber the minority class

instances. If the number of majority class instances can be reduced and then combined with the minority class

instances, balanced data will be obtained. This requires us to split the majority class instances into several bins,

and each bin has similar number of instances with minority class. Considering that some instances of the majority

class may be more similar than others [10, 12], so it is rational to split the majority class into several subclasses with

fewer number of instances. For this purpose, cluster analysis methods can be used. When using clustering as the

data balancing method, a specific clustering algorithm is firstly applied to the majority class instances and multiple

clusters are then obtained. Finally, each of these clusters is combined with minority class, so a new balanced data is

constructed. By this way, we obtain multiple balanced data sets. However, clustering algorithms cannot guarantee

each cluster has similar number of instances, so sometimes they still result in new imbalanced data.

On the other hand, think of as the members of a class they should share some properties with each other, and the

difference among them is much less. This means if we split the majority class instances into several bins, each instance

can be put into anyone bin. Now that this is the case, we can obtain bins whose number of instances are comparable to

that of the minority class. So no bins with too many or too few instances will occur, and the shortcoming of clustering

method is avoided. In our proposed method, this is achieved by randomly splitting the majority class instances into

multiple bins, where each bin has almost the same number of instances as that of the minority class. Then each bin

is combined with the instances of minority class to construct a new balanced data. Finally, multiple balanced data are

obtained.

In the following sections, we refer to the clustering and the random splitting based data balancing methods as

ClusterBal and SplitBal, respectively.

3.3. Classifying

After Modeling, multiple classifiers could be built with the multiple balanced data obtained from Data Balancing.

Thus, for a new problem, we will obtain individual classification result from each classifier. Obviously, it is required

to combine these classification results together. Kittler et al. has proposed five ensemble rules for combining the

multiple classification results of different classifiers, including Max Rule, Min Rule, Product Rule, Majority Vote
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Rule and Sum Rule [31]. For the purpose of conveniently introducing these ensemble rules, we make the following

assumptions.

Suppose that there are K binary-class data and for each data, the class labels are C 1 and C2. Then we could obtain

K classifiers by applying a specific classification algorithm to each of these K binary-class data. For the ith classifier

(1 � i � K), it classifies the new data as C1 with the probability Pi1 while as C2 with the probability Pi2. Moreover, R1

and R2 represents the final ensemble result for the class C1 and C2, respectively. Table 1 shows the detailed ensemble

strategies and descriptions for the five ensemble rules. For more details about these five ensemble rules, please refer

to [31].

Table 1: The strategies and descriptions for Kittler ensemble rules

Rule Strategy Description

Max R1 = arg max
1�i�K

Pi1, R2 = arg max
1�i�K

Pi2 Use the maximum classification probability of these K classifiers for each class label

Min R1 = arg min
1�i�K

Pi1, R2 = arg min
1�i�K

Pi2 Use the minimum classification probability of these K classifiers for each class label

Product R1 =
K∏

i=1
Pi1, R2 =

K∏

i=1
Pi2 Use the product of classification probability of these K classifiers for each class label

Majority Vote R1 =
K∑

i=1
f (Pi1 ,Pi2), R2 =

K∑

i=1
f (Pi2 , Pi1) For the ith classifier, if Pi1 � Pi2, class C1 gets a vote, if Pi2 � Pi1, class C2 gets a vote

Sum R1 =
K∑

i=1
Pi1, R2 =

K∑

i=1
Pi2 Use the summation of classification probability of these K classifiers for each class label

∗ The function f(x,y) is defined as follows:

f (x, y) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 x � y

0 x < y
(1)

However, we argue that these five ensemble rules only consider the classification results of constructed classifiers

while ignoring the relationship between new data and training data. The relationship is that new data seems more

likely to be categorized into the class whose instances are more similar to the new data. Tahir et al. [75] employed a

weighting function based on the neighbor distance to learn the weights of multi-label classifiers and we also consider

using such distance-based weighting mechanism. Therefore in our current study, we proposed five new ensemble

rules on the basis of combining the aforementioned five ensemble rules with the relevance between new data and

the training data distribution, in which the relevance is represented as the negative correlation function of distance.

In fact, such negative correlation function of distance could be regarded as a weighting function to the classification

probability in Table 1.

For the purpose of introducing our ensemble rules, in addition to the aforementioned assumptions, we will use

Di j (1 � i � K, 1 � j � 2) to represent the average distance between new data and the data with class label C j in

the ith data. Table 2 shows the detailed ensemble strategies and descriptions for the our proposed five ensemble rules.

Note that for the purpose of being safe from the distance with value 0 in the denominator, we have added the distance

with a value of 1. What’s more, before computing the distance between two instances, we suggest the researchers that

normalization should be employed to deal with each individual feature of the datasets as the features of the datasets

may be measured on different scales.
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Table 2: The strategies and descriptions for our five ensemble rules

Rule Strategy Description

MaxDistance R1 = arg max
1�i�K

Pi1
Di1+1 , R2 = arg max

1�i�K

Pi2
Di2+1 Use the inverse of average distance to adjust the Max Rule

MinDistance R1 = arg min
1�i�K

Pi1
Di1+1 , R2 = arg min

1�i�K

Pi2
Di2+1 Use the inverse of average distance to adjust the Min Rule

ProDistance R1 =
K∏

i=1

Pi1
Di1+1 , R2 =

K∏

i=1

Pi2
Di2+1 Use the inverse of average distance to adjust the Product Rule

MajDistance R1 =
K∑

i=1

f (Pi1 ,Pi2)
Di1+1 , R2 =

K∑

i=1

f (Pi2 ,Pi1 )
Di2+1 Use the inverse of average distance to adjust the Majority Vote Rule

SumDistance R1 =
K∑

i=1

Pi1
Di1+1 , R2 =

K∑

i=1

Pi2
Di2+1 Use the inverse of average distance to adjust the Sum Rule

∗ The function f(x,y) is defined in Table 1.

Finally, given the final classification result R1 and R2 obtained with the ensemble rules in Table 1 and 2, the new

data is classified as C1 if R1 � R2, otherwise C2.

Our proposed method is different from the UnderBagging method [39]. The UnderBagging method firstly uses

sampling (with or without replacement) from the majority class for constructing several subsets, with each subset

having similar size to the minority class. Then classifiers trained with each majority class subset and the minority

class are combined with the majority vote ensemble rule. The differences between our method and UnderBagging

are obvious: (1) Different data balancing method. We consider two data balancing methods, namely ClusterBal and

SplitBal. ClusterBal is apparently different from the sampling data balancing method in UnderBagging. In addition,

SplitBal is more simpler and faster than sampling as it does not need to use random seed to sample the instance one by

one. (2) Different ensemble rules. UnderBagging only use the majority vote rule to combine the built classifiers, while

we not only consider the five ensemble rules (including the majority vote rule) mentioned in [31] but also improve

these five ensemble rules (see Table 2).

4. Empirical study

4.1. Data sets

In the present study, we have employed 46 highly imbalanced binary data sets from Keel data set repository

[76, 77]. These 46 data sets have different number of instances and attributes, and furthermore they also differ in class

imbalance ratio (IR1).

Table 3 summarizes the properties of each selected imbalanced data sets, including the number of total attributes

(# Attr.), the number of total instances (# Ins.), the number of minority class instances (# Min.), the number of majority

class instances (# Maj.) and the imbalance ratio (IR). Among the 46 used imbalanced data sets, some are originally

binary while others are artificially created from multi-class data sets with the union of one or more classes labeled

as the minority (positive) class while the union of the remaining classes labeled as the majority (negative) class. For

more details about the employed data sets, please refer to http://sci2s.ugr.es/keel/imbalanced.php.

1IR = number o f ma jority class instances
number o f minority class instances
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Table 3: Statistic summary of the 46 highly imbalanced data sets in experimental study

ID Data # Attr. # Ins. # Min. # Maj. IR ID Data # Attr. # Ins. # Min. # Maj. IR

1 yeast3 9 1484 163 1321 8.10 24 ecoli01vs5 7 240 20 220 11.00

2 ecoli3 8 336 35 301 8.60 25 glass06vs5 10 108 9 99 11.00

3 pageblocks0 11 5472 559 4913 8.79 26 glass0146vs2 10 205 17 188 11.06

4 ecoli034vs5 8 200 20 180 9.00 27 glass2 10 214 17 197 11.59

5 yeast2vs4 9 514 51 463 9.08 28 ecoli0147vs56 7 332 25 307 12.28

6 ecoli067vs35 8 222 22 200 9.09 29 cleveland0vs4 14 177 13 164 12.62

7 ecoli0234vs5 8 202 20 182 9.10 30 ecoli0146vs5 7 280 20 260 13.00

8 glass015vs2 10 172 17 155 9.12 31 shuttlec0vsc4 10 1829 123 1706 13.87

9 yeast0359vs78 9 506 50 456 9.12 32 yeast1vs7 8 459 30 429 14.30

10 yeast0256vs3789 9 1004 99 905 9.14 33 glass4 10 214 13 201 15.46

11 yeast02579vs368 9 1004 99 905 9.14 34 ecoli4 8 336 20 316 15.80

12 ecoli046vs5 7 203 20 183 9.15 35 pageblocks13vs4 11 472 28 444 15.86

13 ecoli01vs235 8 244 24 220 9.17 36 abalone918 9 731 42 689 16.40

14 ecoli0267vs35 8 224 22 202 9.18 37 glass016vs5 10 184 9 175 19.44

15 glass04vs5 10 92 9 83 9.22 38 shuttlec2vsc4 10 129 6 123 20.50

16 ecoli0346vs5 8 205 20 185 9.25 39 yeast1458vs7 9 693 30 663 22.10

17 ecoli0347vs56 8 257 25 232 9.28 40 glass5 10 214 9 205 22.78

18 yeast05679vs4 9 528 51 477 9.35 41 yeast2vs8 9 482 20 462 23.10

19 vowel0 14 988 90 898 9.98 42 yeast4 9 1484 51 1433 28.10

20 ecoli067vs5 7 220 20 200 10.00 43 yeast1289vs7 9 947 30 917 30.57

21 glass016vs2 10 192 17 175 10.29 44 yeast5 9 1484 44 1440 32.73

22 ecoli0147vs2356 8 336 29 307 10.59 45 ecoli0137vs26 8 281 7 274 39.14

23 led7digit02456789vs1 8 443 37 406 10.97 46 yeast6 9 1484 35 1449 41.40

4.2. Experimental setup

The experimental study was conducted using the 10-fold cross-validation strategy. That is, each data set was

divided into ten folds, and each fold has the similar number of instances. Then for each fold, a learning algorithm

was trained on the remaining nine folds and then tested on the current fold. For the purpose of obtaining stable and

reliable results, the 10-fold cross-validation strategy was repeated 10 times and each time the ordering of instances

was shuffled.

Six different kinds of classification algorithms, including Naive Bayes [32], C4.5 [33], RIPPER [34], Random

Forest [35], SMO [36] and IBK [37], were selected as the base classifiers. All these six classification algorithms

have been implemented in the Weka learning environment [78]. Default parameters in the Weka software were used

in our present study for all the six classification algorithms except the IBK. Particularly, K was set as 5 for the IBK

classification algorithm.

The area under the ROC (Receiver Operating Characteristic) curve (AUC) [79, 80] was used as our measure of

classification performance, as it has been widely used to evaluate the performance of classifiers on the imbalanced data

[16, 19, 23, 81]. Two other popular performance metrics for imbalance data learning G-Means and F-Measure were

not selected in our present study. He et al. [82] categorize these two metrics into threshold metrics and an important

disadvantage of all the threshold metrics assume full knowledge of the conditions under which the classifiers will

10



be deployed. In particular, they should be appointed with an accurate threshold for a special sample distribution of

training data and thus these two metrics suffer from the subjective factors. However, AUC is able to overcome this

issue as it is insensitive to changes in sample distribution [12, 83] and so it is objective. Therefore we select the

objective AUC instead of the subjective G-Means and F-Measure as our performance metric for learning from the 46

imbalanced data with different sample distribution.

4.3. Experimental design

The present study consists of six investigations. The first investigation is to explore which ensemble rule performs

best with the data balancing method ClusterBal and the second investigation is to explore which ensemble rule per-

forms best with the data balancing method SplitBal. On the basis of the analysis of aforementioned two investigations,

the third investigation explores which combination of data balancing method and ensemble rule performs best across

all the employed classification algorithms. Then the fourth investigation compares our method with the conventional

external imbalance data handling methods when dealing with the imbalanced binary problems using different types

of classification algorithms. The five investigation is conducted to compare our method with the internal methods for

dealing with the class imbalance problem. Finally, the last investigation is to validate whether the added value 1 to

distance in our ensemble rules is reasonable.

(1) Investigation 1: which ensemble rule performs best with ClusterBal?

For the data balancing method ClusterBal, the simple K-Means clustering algorithm was employed, in which K

is set as the ratio of majority class instances over the minority class instances. Our five ensemble rules are employed,

including MaxDistance, MinDistance, ProDistance, MajDistance and SumDistance, were compared with the five

ensemble rules proposed by Kittler et al. [31], including Max, Min, Product, Majority Vote and Sum.

(2) Investigation 2: which ensemble rule performs best with SplitBal?

For the data balancing method SplitBal, the number of split bins is set as the ratio of majority class instances over

the minority class instances. Additionally, the ten ensemble rules (including our five and Kittler’s five) were compared

as well.

(3) Investigation 3: which combination of data balancing method and ensemble rule performs best?

In this investigation, the results from former two investigations are utilized. The first investigation obtains the best

ensemble rule with ClusterBal while the second investigation achieves the best ensemble rule with SplitBal. Then

we analyzed the results of these two combinations over the six employed classification algorithms to explore which

combination of data balancing method and ensemble rule performs best.

(4) Investigation 4: is our class imbalance data classification method more effective than the external methods?

This investigation was used to explore whether our proposed method is really effective or not by comparing it with

10 conventional external imbalance data handling methods.

Three sampling methods, including random under-sampling (RUS), random over-sampling (ROS) and synthetic

minority over-sampling technique (SMOTE) were employed in the present study. In addition, we employed the
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popular MetaCost [38] algorithm as the cost sensitive learning method. Furthermore, Bagging [27], Boosting [28],

and four popular Bagging and Boosting based ensemble methods EasyEnsemble [19], RUSBoost [16], SMOTEBoost

[15] and UnderBagging [39] were also compared in the experiment. Moreover, our previous method EM1vs1 [40] for

dealing with the class imbalance problem in software defect prediction was also compared in present study.

Note that we refer to results of applying the six classification algorithms on the original imbalanced binary data as

Orig in the following sections.

(5) Investigation 5: is our class imbalance data classification method more effective than the internal methods?

Investigation 4 was conducted to validate the effectiveness of our proposed method for dealing with the imbalanced

problems by comparing it with the conventional external methods. However, we also need to compare our method

with the internal imbalance data handling methods, and thus this investigation was conducted for this purpose. As our

method could be regarded as a kind of external method, in this investigation we will only select a few representative

internal methods for comparison.

Fernández et al. [41] has improved the behavior of fuzzy rule based classification method for the class imbalance

problems by a means of tuning step. Particularly, the 2-tuples based genetic tuning approach was adapted by them

for enhancing the performance of fuzzy models. In their study, two learning methods to generate the rule base for the

fuzzy rule based classification system were employed, including Chi et al’s rule generation (Chi) [84] and Ishbuchi

and Yamamoto’s Fuzzy Hybrid Genetic Based Machine Learning(FH-GBML) [85]. In this section, we compare our

proposed method using different classification algorithms with the Chi methods, including Chi3-GTS and Chi5-GTS

in [41].

(6) Investigation 6: is the value 1 added to distance in our ensemble rules reasonable?

Strategies of the five ensemble rules in Table 2 could be simplified into the following form R = f ( P
D+Const ), in

which R represents the final ensemble results, P stands for the classification probability and D stands for the distance.

In addition, the Const stands for a constant value specified by the researchers. In current study, we have set Const as

1 as many other researchers do to avoid the D with value 0 in denominator. This investigation is conducted to validate

whether the Const with value 1 in our ensemble rules is reasonable.

In order to conduct such investigation, we intend to perform a series of experiments with various Const values in

our ensemble rules. Specially, we have respectively selected five different values (including 0.01, 0.1, 1, 10 and 100)

as the Const value in our ensemble rules.

4.4. Experimental results and analysis

(1) Results for ensemble rules with ClusterBal

This investigation explores which ensemble rule performs best with the data balancing method ClusterBal for

the ensembles with the six classification algorithms as base classifiers, respectively. Due to space limitation, in

the following we will only show the average AUC values of the 46 imbalanced data for each specific classification

algorithm. Table 4 shows the average AUC values for each classification algorithm while using different ensemble
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rules with ClusterBal. Note that for each classification algorithm, the best average AUC value corresponding to a

specific ensemble rule is highlighted in boldface.

Table 4: Average AUC values of 46 imbalanced data for different ensemble rules with ClusterBal

Base Kittler’s ensemble rules [31] Our ensemble rules

Classifier Max Min Product Majority Sum MaxDistance MinDistance ProDistance MajDistance SumDistance

Naive Bayes 0.8713 0.5874 0.6100 0.6031 0.8824 0.8937 0.5880 0.6110 0.8843 0.8828

C4.5 0.8271 0.7784 0.7784 0.6335 0.8778 0.9014 0.7784 0.7784 0.8896 0.8795

RIPPER 0.8223 0.5423 0.5423 0.6409 0.8795 0.9001 0.5423 0.5423 0.8927 0.8834

Random Forest 0.9112 0.8542 0.8542 0.6633 0.9205 0.9224 0.8542 0.8542 0.9169 0.9222

SMO 0.7806 0.7793 0.7793 0.7232 0.8850 0.8910 0.7793 0.7793 0.8925 0.8850

IBK 0.9025 0.9032 0.8667 0.7177 0.9053 0.9123 0.9104 0.8665 0.9004 0.9051

From Table 4, we observe that the ensemble rule MaxDistance ranks first for five classification algorithms and the

ensemble rule MajDistance ranks first for one classification algorithms. For the purpose of providing readers a more

explicit picture about the performance difference of different ensemble rules, we rank the 10 different ensemble rules

with ClusterBal for each classification algorithm according the average AUC values of the 46 imbalanced data. Then

we summarize the ranks of each ensemble rule under the six classification algorithms and provide the final rank. Table

5 shows the details.

Table 5: Rank of different ensemble rules with ClusterBal

Base Kittler’s ensemble rules [31] Our ensemble rules

Classifier Max Min Product Majority Sum MaxDistance MinDistance ProDistance MajDistance SumDistance

Naive Bayes 5 10 7 8 4 1 9 6 2 3

C4.5 5 6 6 10 4 1 6 6 2 3

RIPPER 5 7 7 6 4 1 7 7 2 3

Random Forest 5 6 6 10 3 1 6 6 4 2

SMO 5 6 6 10 3 2 6 6 1 3

IBK 6 5 8 10 3 1 2 9 7 4

Sum 31 40 40 54 21 7 36 40 18 18

Rank 5 7 7 10 4 1 6 7 2 2

From Table 5, we observe: (i) For the five ensemble rules proposed by Kittler et al., Sum performs better than

the other four ensemble rules, which is identical to the experimental results of [31]. (ii) Four of our proposed rules,

including MaxDistance, MinDistance, MajDistance and SumDistance, perform better than their corresponding ensem-

ble rules proposed by Kittler et al. [31]. In addition, our ProDistance ensemble rule ranks equally to its corresponding

ensemble rule Product. This means that when using the data balancing method ClusterBal, our ensemble rules are

more effective than those of Kittler. (iii) Our proposed ensemble rule MaxDistance performs best among all the 10

ensemble rules with the data balancing method ClusterBal.

(2) Results for ensemble rules with SplitBal

This investigation explores which ensemble rule performs best with the data balancing method SplitBal for the

ensembles with the six classification algorithms as base classifiers, respectively. Table 6 shows the average AUC
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values for each classification algorithm while using different ensemble rules with SplitBal.

Table 6: Average AUC values of 46 imbalanced data for different ensemble rules with SplitBal

Base Kittler’s ensemble rules [31] Our ensemble rules

Classifier Max Min Product Majority Sum MaxDistance MinDistance ProDistance MajDistance SumDistance

Naive Bayes 0.8776 0.8567 0.8601 0.8300 0.8787 0.8811 0.8577 0.8601 0.8679 0.8793

C4.5 0.8706 0.8041 0.8040 0.8558 0.9107 0.9146 0.8041 0.8040 0.9110 0.9127

RIPPER 0.8722 0.6225 0.6330 0.8346 0.8897 0.9050 0.6225 0.6336 0.8957 0.8951

Random Forest 0.9274 0.8999 0.9007 0.8730 0.9318 0.9309 0.9002 0.9009 0.9243 0.9329

SMO 0.8618 0.8207 0.8207 0.8420 0.8790 0.8810 0.8207 0.8207 0.8800 0.8790

IBK 0.9092 0.9086 0.9069 0.8391 0.9113 0.9141 0.9125 0.9090 0.8913 0.9143

From Table 6, we observe that for the data balancing method SplitBal, MaxDistance ensemble rule ranks first

with four of the six classification algorithms while the ensemble rule SumDistance ranks first for two classification

algorithms. Also we rank the 10 different ensemble rules with SplitBal for each classification algorithm according the

average AUC values of the 46 imbalanced data, and then summarize the ranks of each ensemble rule to provide the

final rank. Table 7 shows the details.

Table 7: Rank of different ensemble rules with SplitBal

Base Kittler’s ensemble rules [31] Our ensemble rules

Classifier Max Min Product Majority Sum MaxDistance MinDistance ProDistance MajDistance SumDistance

Naive Bayes 4 9 6 10 3 1 8 6 5 2

C4.5 5 7 9 6 4 1 7 9 3 2

RIPPER 5 9 8 6 4 1 9 7 2 3

Random Forest 4 9 7 10 2 3 8 6 5 1

SMO 5 7 7 6 3 1 7 7 2 3

IBK 5 7 8 10 4 2 3 6 9 1

Sum 28 48 45 48 20 9 42 41 26 12

Rank 4 9 8 9 3 1 7 6 5 2

From Table 7, we observe that: (i) For the data balancing method SplitBal, Sum again performs better than the

other four ensemble rules proposed by Kittler et al., which is similar to the results obtained with ClusterBal. (ii) Our

proposed five ensemble rules all perform better than their corresponding ensemble rule proposed by Kittler et al. This

means that when using SplitBal as the data balancing method, our ensemble rules are usually better than those in [31].

(iii) As well as ClusterBal, for SplitBal, our MaxDistance ensemble rule performs best among the 10 ensemble rules

over the six classification algorithms.

(3) Results for the comparison of ClusterBal and SplitBal

From the former two investigations, we have known that, for both of the two data balancing methods ClusterBal

and SplitBal, MaxDistance ensemble rule performs best among the 10 ensemble rules. Thus in this investigation, we

compare the combination ClusterBal+MaxDistance to the combination SplitBal+MaxDistance, and find out which

combination of data balancing method and ensemble rule performs best.

For each data set, Table 8 provides the detailed AUC values for these two combinations with the six different
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classification algorithms. Note that the last ‘Avg’ row stands for the average AUC values of the 46 data sets and

furthermore the better average AUC values of the two combinations are highlighted in boldface for a specific classifi-

cation algorithm.

Table 8: AUC values for the two combinations using different classification algorithms

Naive Bayes C4.5 RIPPER Random Forest SMO IBK

Data ClusterBal SplitBal ClusterBal SplitBal ClusterBal SplitBal ClusterBal SplitBal ClusterBal SplitBal ClusterBal SplitBal

yeast3 0.9617 0.9666 0.9604 0.9666 0.9645 0.9679 0.9693 0.9743 0.9519 0.9377 0.9627 0.9716

ecoli3 0.9305 0.9286 0.9512 0.9252 0.9495 0.9289 0.9403 0.9306 0.9508 0.9082 0.9433 0.9469

pageblocks0 0.9197 0.9280 0.9663 0.9858 0.9705 0.9857 0.9846 0.9910 0.8959 0.8600 0.9650 0.9710

ecoli034vs5 0.9438 0.8703 0.9338 0.9566 0.9437 0.9519 0.9644 0.9786 0.9397 0.9170 0.9415 0.9718

yeast2vs4 0.9249 0.9282 0.9282 0.9749 0.9284 0.9711 0.9644 0.9826 0.9125 0.9081 0.9450 0.9730

ecoli067vs35 0.9170 0.8959 0.9193 0.9004 0.9125 0.9027 0.9262 0.9208 0.9193 0.8931 0.9220 0.9365

ecoli0234vs5 0.9399 0.8835 0.9465 0.9599 0.9448 0.9647 0.9636 0.9721 0.9393 0.9171 0.9437 0.9695

glass015vs2 0.5885 0.6511 0.6611 0.7284 0.6411 0.6865 0.7594 0.8067 0.5571 0.5828 0.6954 0.6915

yeast0359vs78 0.7835 0.7676 0.7647 0.7789 0.7638 0.7740 0.7986 0.8014 0.7712 0.7667 0.8060 0.7749

yeast0256vs3789 0.7940 0.8281 0.8051 0.8487 0.8087 0.8300 0.8358 0.8613 0.8019 0.8175 0.8413 0.8340

yeast02579vs368 0.9279 0.9269 0.9256 0.9217 0.9266 0.9281 0.9419 0.9501 0.9273 0.9203 0.9454 0.9429

ecoli046vs5 0.9441 0.8692 0.9386 0.9573 0.9406 0.9627 0.9742 0.9745 0.9459 0.9171 0.9538 0.9700

ecoli01vs235 0.9348 0.9123 0.9340 0.9430 0.9323 0.9516 0.9312 0.9567 0.9376 0.9072 0.9368 0.9675

ecoli0267vs35 0.9122 0.8990 0.9071 0.9046 0.8998 0.8885 0.9055 0.9300 0.9033 0.8859 0.9049 0.9337

glass04vs5 0.9967 0.9928 0.9945 0.9901 0.9976 0.9938 0.9999 1.0000 0.9959 0.9963 0.9912 0.9809

ecoli0346vs5 0.9472 0.8613 0.9449 0.9545 0.9416 0.9505 0.9629 0.9694 0.9586 0.9001 0.9717 0.9679

ecoli0347vs56 0.9539 0.9045 0.9574 0.9367 0.9468 0.9400 0.9661 0.9577 0.9584 0.9277 0.9582 0.9611

yeast05679vs4 0.8412 0.8257 0.8516 0.8732 0.8535 0.8621 0.8768 0.8962 0.8361 0.8275 0.8607 0.8859

vowel0 0.9822 0.9797 0.9961 0.9914 0.9910 0.9879 0.9993 0.9989 0.9903 0.9558 1.0000 0.9992

ecoli067vs5 0.9031 0.8570 0.9016 0.9327 0.9022 0.9249 0.9371 0.9494 0.9067 0.9085 0.9096 0.9503

glass016vs2 0.6369 0.6679 0.6943 0.7710 0.6997 0.7111 0.7865 0.8364 0.6252 0.6650 0.7484 0.7564

ecoli0147vs2356 0.9291 0.8961 0.9329 0.9354 0.9276 0.9368 0.9320 0.9369 0.9356 0.8985 0.9434 0.9475

led7digit02456789vs1 0.9616 0.9522 0.9614 0.9508 0.9664 0.9588 0.9605 0.9576 0.9638 0.9463 0.9633 0.9650

ecoli01vs5 0.9614 0.8742 0.9544 0.9799 0.9567 0.9781 0.9772 0.9853 0.9586 0.9097 0.9623 0.9778

glass06vs5 0.9874 0.9763 0.9957 0.9952 0.9868 0.9888 0.9988 0.9988 0.9851 0.9907 0.9943 0.9919

glass0146vs2 0.6567 0.6736 0.7303 0.7598 0.7358 0.7164 0.7965 0.8396 0.6498 0.6886 0.7386 0.7494

glass2 0.7202 0.7063 0.7480 0.7852 0.7355 0.7264 0.8274 0.8412 0.7099 0.6856 0.7795 0.7288

ecoli0147vs56 0.9635 0.9236 0.9643 0.9635 0.9580 0.9575 0.9696 0.9673 0.9657 0.9325 0.9642 0.9665

cleveland0vs4 0.9590 0.9474 0.9591 0.9713 0.9476 0.9618 0.9552 0.9528 0.9626 0.9668 0.9762 0.9831

ecoli0146vs5 0.9506 0.8840 0.9421 0.9657 0.9421 0.9599 0.9786 0.9735 0.9496 0.9016 0.9551 0.9718

shuttlec0vsc4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

yeast1vs7 0.7835 0.8090 0.7708 0.8038 0.7769 0.8132 0.8058 0.8233 0.7601 0.8228 0.8063 0.8236

glass4 0.9361 0.9243 0.9742 0.9393 0.9790 0.9561 0.9801 0.9693 0.9616 0.9462 0.9593 0.9384

ecoli4 0.9973 0.9919 0.9936 0.9921 0.9929 0.9761 0.9933 0.9888 0.9951 0.9899 0.9938 0.9956

pageblocks13vs4 0.9873 0.9486 0.9976 0.9988 0.9987 0.9924 0.9999 0.9998 0.9883 0.8234 0.9990 0.9948

abalone918 0.7681 0.7397 0.7714 0.7673 0.7613 0.7874 0.8054 0.8209 0.7512 0.7578 0.7631 0.7561

glass016vs5 0.9895 0.9796 0.9954 0.9890 0.9923 0.9855 0.9950 0.9968 0.9857 0.9874 0.9870 0.9737

shuttlec2vsc4 0.9955 1.0000 1.0000 1.0000 0.9989 0.8860 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

yeast1458vs7 0.6638 0.6861 0.6686 0.6965 0.6712 0.6754 0.7163 0.7101 0.6657 0.6978 0.7240 0.7133

glass5 0.9889 0.9835 0.9970 0.9889 0.9899 0.9846 0.9945 0.9966 0.9834 0.9892 0.9836 0.9604

yeast2vs8 0.8034 0.7893 0.7935 0.8190 0.8012 0.8021 0.8394 0.8431 0.7840 0.8131 0.8195 0.7640

yeast4 0.8673 0.8595 0.8834 0.9166 0.8800 0.9173 0.9031 0.9320 0.8685 0.8729 0.9012 0.9232

yeast1289vs7 0.7235 0.7565 0.7242 0.7816 0.7214 0.7496 0.7528 0.7772 0.7020 0.7613 0.7721 0.7631

yeast5 0.9879 0.9865 0.9892 0.9900 0.9910 0.9881 0.9914 0.9911 0.9873 0.9687 0.9922 0.9893

ecoli0137vs26 0.9152 0.9503 0.9053 0.9535 0.9080 0.9419 0.9438 0.9517 0.9175 0.9458 0.9112 0.8908

yeast6 0.9289 0.9465 0.9299 0.9251 0.9256 0.9263 0.9247 0.9294 0.9296 0.9106 0.9291 0.9261

Avg 0.8937 0.8811 0.9014 0.9146 0.9001 0.9050 0.9224 0.9309 0.8910 0.8810 0.9123 0.9141

∗ The ‘ClusterBal’ columns stand for the results of combination ClusterBal+MaxDistance while the ‘SplitBal’ columns represent the results of combination SplitBal+MaxDistance.

From Table 8, we observe that the combination ClusterBal+MaxDistance performs better than the combination

SplitBal+MaxDistance in terms of average AUC values for the classification algorithms Naive Bayes and SMO.

However, for the other four classification algorithms C4.5, RIPPER, Random Forest and IBK, combination Split-

Bal+MaxDistance performs better.
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For the purpose of formally confirming that whether or not the above performance difference are significant, we

conducted the Wilcoxon signed rank test [86] at the significance level 0.05. For the classification algorithms Naive

Bayes and SMO, the alternative hypotheses are that the combination ClusterBal+MaxDistance performs better than

the combination SplitBal+MaxDistance, while for the other four classification algorithms, the alternative hypotheses

are that the combination SplitBal+MaxDistance is better than the combination ClusterBal+MaxDistance.

The p-values are 0.0069, 0.0012, 0.0157, 0.0003, 0.0272 and 0.1866, which are corresponding to the hypotheses

of classification algorithms Naive Bayes, C4.5, RIPPER, Random Forest, SMO and IBK, respectively. Five of the six

p-values are less than the significance level 0.05 except the one 0.1866 corresponding to the hypothesis of classifica-

tion algorithm IBK. This means that when using the classification algorithms Naive Bayes and SMO, the combination

ClusterBal+MaxDistance performs significantly better than the combination SplitBal+MaxDistance, while the com-

bination SplitBal+MaxDistance is significantly better than the combination ClusterBal+MaxDistance with the three

classification algorithms C4.5, RIPPER and Random Forest. In addition, when using IBK as the classification algo-

rithm, these two combinations are equivalent.

(4) Results for the comparison of our method with the external methods

This investigation explores whether or not our proposed method is more effective at dealing with the imbalanced

problems by comparing our method with the conventional external imbalance data handling methods with different

classification algorithms as base classifiers. From the former investigation we knew that the best two combinations

(ClusterBal+MaxDistance and SplitBal+MaxDistance) of data balancing method and ensemble rule perform differ-

ently with different classification algorithms. Thus in this investigation we compare the results of the both combi-

nations with results of conventional imbalance data handling methods. For space limitations, for each classification

algorithm, we only provide the average AUC values of the 46 imbalanced data sets instead of the individual AUC

value for each imbalanced data set.

Table 9 shows the detailed average AUC values of the 46 imbalanced data sets for different imbalance data handling

methods for the ensembles with the six classification algorithms as base classifiers.

Table 9: Average AUC values of 46 imbalanced data for different imbalance data handling methods

Base Conventional imbalance data handling methods Our methods

Classifier Orig RUS ROS SMOTE MetaCost Bagging Boosting EasyEnsemble RUSBoost SMOTEBoost UnderBagging EM1vs1 ClusterBal SplitBal

Naive Bayes 0.8687 0.8587 0.8691 0.8646 0.8423 0.8759 0.8566 0.8790 0.8670 0.8630 0.8780 0.8651 0.8937 0.8811

J48 0.7984 0.8350 0.8147 0.8499 0.8364 0.8841 0.8999 0.9019 0.8985 0.9093 0.9083 0.9096 0.9014 0.9146

Ripper 0.7764 0.8067 0.8080 0.8423 0.8286 0.8556 0.8940 0.8941 0.8803 0.9009 0.8882 0.8919 0.9001 0.9050

Random Forest 0.8998 0.8979 0.8996 0.9095 0.9060 0.9305 0.9068 0.9215 0.9232 0.9254 0.9313 0.9317 0.9224 0.9309

SMO 0.6726 0.8317 0.8456 0.8485 0.6608 0.7190 0.8779 0.8865 0.8581 0.8668 0.8771 0.8753 0.8910 0.8810

IBK 0.8837 0.8819 0.8774 0.8973 0.8816 0.8917 0.8738 0.8889 0.8835 0.9001 0.9092 0.9077 0.9123 0.9141

∗ The ‘ClusterBal’ columns stand for the results of combination ClusterBal+MaxDistance while the ‘SplitBal’ columns represent the results of combination SplitBal+MaxDistance.

From Table 9 we observe that, for each of the six classification algorithms, the two combinations always achieve

the best average AUC value among all the imbalance data handling methods. Particularly, the combination Cluster-

Bal+MaxDistance performs best for classification algorithms Naive Bayes and SMO, while for the three classification

algorithms J48, Ripper and IBK, the combination SplitBal+MaxDistance performs best.

16



For the purpose of providing the readers a big picture about the performance difference of these 14 methods, we

rank these 14 methods for each specific classification algorithm according to the average AUC values, summarize

these ranks over the six classification algorithms and give the final rank. Table 10 shows the details.

Table 10: Rank of different imbalance data handling methods over the six classification algorithms

Base Conventional imbalance data handling methods Our methods

Classifier Orig RUS ROS SMOTE MetaCost Bagging Boosting EasyEnsemble RUSBoost SMOTEBoost UnderBagging EM1vs1 ClusterBal SplitBal

Naive Bayes 7 12 6 10 14 5 13 3 8 11 4 9 1 2

J48 14 12 13 10 11 9 7 5 8 3 4 2 6 1

Ripper 14 13 12 10 11 9 5 4 8 2 7 6 3 1

Random Forest 12 14 13 9 11 4 10 8 6 5 2 1 7 3

SMO 13 11 10 9 14 12 4 2 8 7 5 6 1 3

IBK 9 11 13 6 12 7 14 8 10 5 3 4 2 1

Sum 69 73 67 54 73 46 53 30 48 33 25 28 20 11

Rank 12 13 11 10 13 7 9 5 8 6 3 4 2 1

From Table 10, we observe that the two combinations SplitBal+MaxDistance and ClusterBal+MaxDistance rank

first and second, respectively. This means that with the six classification algorithms as base classifiers, our proposed

method could not only deal with the class imbalance problems but also perform better than the conventional external

imbalance data handling methods.

In order to statistically confirm this conclusion, for each classification algorithm, the Friedman test [87], which

is based on the ranked performance rather than the actual performance estimates and therefore is less susceptible to

outliers, was conducted with the significance level 0.05 to compare these different imbalance data handling methods

over multiple data sets. The six p-values are all less than 0.05, which indicates that the performance differences among

the 14 imbalance data handling methods are not random and therefore confirms the differences of average AUC values

are significant. After that, a post hoc test was performed to identify which particular methods significantly perform

best, as suggested by Demsar [88]. This was accomplished by applying the Nemenyi test [89] at the significance

level α = 0.05. Fig. 2 includes six subfigures, each of which shows the results of the Nemenyi test for a specific

classification algorithm.

Each subfigure of Fig. 2 plots the imbalance data handling methods against average performance ranks, where all

methods are sorted according to their ranks. The ‘∗’ denotes the respective average rank of each method and the line

segment to the right of each method represents its critical difference, which means the methods whose ‘∗’ on the right

end of the line are outperformed significantly. The critical difference is highlighted with a vertical dotted line in two

cases. The left vertical line is associated with the best method, and all methods right to this line perform significantly

worse than this method. The right vertical line is associated with the worst method, and all methods left to this line

perform significantly better than it.

From Fig. 2 we observe that (i) For each classification algorithm, the two combinations perform significantly

better than the Orig method. This means that our proposed method could improve the performance of Orig method

significantly, which indicates that our method could be used to deal with the class imbalance problems. (ii) For the

three sampling methods (RUS, ROS and SMOTE) and the cost sensitive learning method MetaCost, the two combi-

17



0 5 10 15

ClusterBal
SplitBal

UnderBagging
Bagging

EasyEnsemble
RUSBoost

ROS
Orig

SMOTE
SMOTEBoost

EM1vs1
Boosting

RUS
MetaCost

(a) Naive Bayes
0 5 10 15

SplitBal
EM1vs1

SMOTEBoost
UnderBagging

ClusterBal
EasyEnsemble

RUSBoost
Boosting
Bagging
SMOTE

MetaCost
RUS
ROS
Orig

(b) C4.5
0 5 10 15

SplitBal
ClusterBal

SMOTEBoost
EasyEnsemble

Boosting
EM1vs1

UnderBagging
RUSBoost

Bagging
SMOTE

MetaCost
ROS
RUS
Orig

(c) RIPPER

0 5 10 15

Bagging
SplitBal
EM1vs1

UnderBagging
RUSBoost
ClusterBal

SMOTEBoost
EasyEnsemble

SMOTE
Boosting

MetaCost
ROS
Orig
RUS

(d) Random Forest
0 5 10 15

ClusterBal
SplitBal

EasyEnsemble
UnderBagging

EM1vs1
Boosting

SMOTEBoost
RUSBoost

SMOTE
ROS
RUS

Bagging
Orig

MetaCost

(e) SMO
0 5 10 15

SplitBal
ClusterBal

EM1vs1
UnderBagging

SMOTE
Bagging

SMOTEBoost
RUSBoost

RUS
Orig

EasyEnsemble
MetaCost

ROS
Boosting

(f) IBK

Figure 2: Results of the pairwise comparisons of the 14 models using Nemenyi post hoc test with α = 0.05

nations outperform them significantly for all the six classification algorithms. This means that our proposed method

are more effective than the four conventional imbalance data handling methods RUS, ROS, SMOTE, MetaCost when

dealing with the class imbalance problems. (iii) For the basic Bagging and Boosting methods, with the three classifica-

tion algorithms C4.5, RIPPER and SMO, our two combinations both perform significantly better than Bagging while

with the other three classification algorithms, Boosting is significantly outperformed by our two combinations. (iv)For

comparison between our methods and the three Bagging and Boosting based ensemble methods EasyEnsemble, RUS-

Boost and SMOTEBoost, different results could be obtained with different classification algorithms. Specially, for

IBK, the two combinations both perform significantly better than these three ensemble methods. However, for C4.5,

RIPPER and Random Forest, the two combinations are not significantly better than any of the three ensemble meth-

ods. In addition, the two combinations both perform significantly better than SMOTEBoost for Naive Bayes while

for classification algorithm SMO, the two combinations both outperform RUSBoost significantly. All in all, our pro-

posed method could be a good alternative for Bagging and Boosting based ensemble methods when dealing with the

class imbalance problems, and it usually performs better than these conventional ensemble methods for some specific

classification algorithms. (v) For comparison with UnderBagging,our proposed method performs better than it across

the six employed classification algorithms, though not significantly. (vi) For our former method EM1vs1 [40], the
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new proposed combinations both perform significantly better than it with the classification algorithm Naive Bayes.

However, for the other five classification algorithms, these three methods are equivalent when dealing with the class

imbalance problems.

From the above results we can know that our proposed method is able to improve the performance of classifiers

over originally binary-class imbalance data, and it usually performs better than the conventional external imbalance

data handling methods.

(5) Results for the comparison of our method with the fuzzy rule based methods

From Table 8 we could know that both of our two data balancing methods ClusterBal and SplitBal perform best

with the classification algorithm Random Forest while perform worst with the classification algorithm SMO when

using the MaxDistance ensemble rule. Thus in this section we will compare the results of the fuzzy rule based

methods with the best and worst results of our methods. Table 11 shows the classification results of the 46 datasets in

terms of AUC. Note that for each specific data set, the best AUC value was highlighted in boldface.

From Table 11, we find that our two combinations with Random Forest and SMO all perform better than the

Chi3-GTS and Chi5-GTS in terms of the average AUC values over the 46 employed datasets.

For the purpose of formally confirming whether the performance difference is significant, we conducted the pop-

ular Wilcoxon signed rank test at the significance level 0.05. The alternative hypotheses are that for each of the two

classification algorithms Random Forest and SMO, the two combinations both perform better than the two fuzzy rule

based classification methods Chi3-GTS and Chi5-GTS. All the corresponding p-values are less than the significance

level 0.05, which means that our proposed method with Random Forest and SMO perform significantly better than

the two fuzzy rule based methods. This further indicates that with the other four classification algorithms, our method

outperform these two fuzzy rule based methods significantly.

(6) The impact of different Const2 values on the classification performance

In former sections, our ensemble rules with Const value 1 have been employed to combine with the two data

balancing methods SplitBal and ClusterBal, and the proposed method has shown better classification performance

than the conventional imbalance data handling methods. This section is conducted to validate that whether the Const

value with 1 in our ensemble rules is reasonable. Particularly, we have performed a series of experiments with five

different values as the Const value, including 0.01, 0.1, 1, 10 and 100.

Figure 3 and Figure 4 respectively shows the impact of different Const values on the classification performance

when combining our five ensemble rules with the two data balancing methods SplitBal and ClusterBal. Note that in

each subfigure of these two figures, the X-axis stands for various Const values in our ensemble rules and the Y-axis

represents the classification performance in terms of the average AUC value.

From Figure 3.(a), we observe that for combining the ensemble rule MaxDistance with data balancing method

SplitBal, the average AUC value remains unchanged when changing the Const value from 0.01 to 1 for all the six

2Const is defined in section 4.3.(6)
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Table 11: The AUC of Chi3-GTS and Chi5-GTS vs. the best and worst AUC of our method

Fuzzy rule based methods ClusterBal+MaxDistance SplitBal+MaxDistance

Data Chi3-GTS Chi5-GTS Random Forest SMO Random Forest SMO

yeast3 0.5000 0.6179 0.9693 0.9519 0.9743 0.9377

ecoli3 0.5126 0.7608 0.9403 0.9508 0.9306 0.9082

pageblocks0 0.7028 0.7458 0.9846 0.8959 0.9910 0.8600

ecoli034vs5 0.8194 0.8278 0.9644 0.9397 0.9786 0.9170

yeast2vs4 0.6160 0.7297 0.9644 0.9125 0.9826 0.9081

ecoli067vs35 0.7575 0.7950 0.9262 0.9193 0.9208 0.8931

ecoli0234vs5 0.7945 0.8253 0.9636 0.9393 0.9721 0.9171

glass015vs2 0.4871 0.4734 0.7594 0.5571 0.8067 0.5828

yeast0359vs78 0.5967 0.5714 0.7986 0.7712 0.8014 0.7667

yeast0256vs3789 0.5966 0.6861 0.8358 0.8019 0.8613 0.8175

yeast02579vs368 0.6535 0.8698 0.9419 0.9273 0.9501 0.9203

ecoli046vs5 0.8000 0.8308 0.9742 0.9459 0.9745 0.9171

ecoli01vs235 0.7627 0.7714 0.9312 0.9376 0.9567 0.9072

ecoli0267vs35 0.7875 0.8101 0.9055 0.9033 0.9300 0.8859

glass04vs5 0.5316 0.6456 0.9999 0.9959 1.0000 0.9963

ecoli0346vs5 0.7973 0.8480 0.9629 0.9586 0.9694 0.9001

ecoli0347vs56 0.8156 0.8476 0.9661 0.9584 0.9577 0.9277

yeast05679vs4 0.4969 0.5716 0.8768 0.8361 0.8962 0.8275

vowel0 0.9278 0.9772 0.9993 0.9903 0.9989 0.9558

ecoli067vs5 0.7975 0.7875 0.9371 0.9067 0.9494 0.9085

glass016vs2 0.4857 0.4457 0.7865 0.6252 0.8364 0.6650

ecoli0147vs2356 0.7201 0.7772 0.9320 0.9356 0.9369 0.8985

led7digit02456789vs1 0.8257 0.8257 0.9605 0.9638 0.9576 0.9463

ecoli01vs5 0.8205 0.8318 0.9772 0.9586 0.9853 0.9097

glass06vs5 0.6300 0.7500 0.9988 0.9851 0.9988 0.9907

glass0146vs2 0.4920 0.4601 0.7965 0.6498 0.8396 0.6886

glass2 0.4822 0.4569 0.8274 0.7099 0.8412 0.6856

ecoli0147vs56 0.7767 0.8205 0.9696 0.9657 0.9673 0.9325

cleveland0vs4 0.3505 0.1151 0.9552 0.9626 0.9528 0.9668

ecoli0146vs5 0.7481 0.8308 0.9786 0.9496 0.9735 0.9016

shuttlec0vsc4 0.9912 0.9831 1.0000 1.0000 1.0000 1.0000

yeast1vs7 0.4977 0.5147 0.8058 0.7601 0.8233 0.8228

glass4 0.5567 0.7576 0.9801 0.9616 0.9693 0.9462

ecoli4 0.7234 0.8671 0.9933 0.9951 0.9888 0.9899

pageblocks13vs4 0.6922 0.6888 0.9999 0.9883 0.9998 0.8234

abalone918 0.5000 0.5111 0.8054 0.7512 0.8209 0.7578

glass016vs5 0.4857 0.7043 0.9950 0.9857 0.9968 0.9874

shuttlec2vsc4 0.9338 0.8338 1.0000 1.0000 1.0000 1.0000

yeast1458vs7 0.5000 0.4932 0.7163 0.6657 0.7101 0.6978

glass5 0.4927 0.7085 0.9945 0.9834 0.9966 0.9892

yeast2vs8 0.7478 0.7446 0.8394 0.7840 0.8431 0.8131

yeast4 0.5000 0.5248 0.9031 0.8685 0.9320 0.8729

yeast1289vs7 0.5000 0.4945 0.7528 0.7020 0.7772 0.7613

yeast5 0.5233 0.5965 0.9914 0.9873 0.9911 0.9687

ecoli0137vs26 0.8445 0.8336 0.9438 0.9175 0.9517 0.9458

yeast6 0.5000 0.5955 0.9247 0.9296 0.9294 0.9106

Avg 0.6538 0.6991 0.9224 0.8910 0.9309 0.8810

employed classification algorithms. However, when changing the Const value from 1 to 100, two classification algo-

rithms J48 and Ripper show obvious decrease in average AUC value while the other four classification algorithms still

keep unchanged.

From Figure 3.(b)-(d), it could be observed that for combining each of the three ensemble rules (MinDistance,

ProDistance and MajDistance) with data balancing method SplitBal, there is no obvious change in average AUC

value for all the six employed classification algorithms when changing the Const value from 0.01 to 100. This means

that changing the Const value has little effect on these three ensemble rules with data balancing method SplitBal.

From Figure 3.(e), we observe that for combining the ensemble rule SumDistance with data balancing method
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Figure 3: The impact of various Const values on AUC value when combining our five ensemble rules with SplitBal

SplitBal, when changing the Const value from 0.01 to 1, the average AUC value remains unchanged for all the six

employed classification algorithms. Furthermore, when changing the Const value from 1 to 100, the average AUC

value remains unchanged for the five classification algorithms Naive Bayes, J48, Random Forest, SMO and IBK.

However, for the classification algorithm Ripper, it shows obvious decrease in average AUC value when changing the

Const value from 1 to 100.

From Figure 4.(a), we could observe that for the combination of ensemble rule MaxDistance and data balancing

method ClusterBal, no obvious change could be observed in average AUC value when changing the Const value from

0.01 to 1 for all the six employed classification algorithms. However, when changing the Const value from 1 to 100,

the average AUC values of four classification algorithms (including Naive Bayes, J48, Ripper and SMO) show clear

decrease.

From Figure 4.(b) and Figure 4.(c), no obvious change in average AUC value could be observed for all the six

employed classification algorithms when changing the Const value from 0.01 to 100. This means that when combining

the ensemble rules MinDistance and ProDistance with data balancing method ClusterBal, the impact of the Const

value could be negligible.
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Figure 4: The impact of various Const values on AUC value when combining our five ensemble rules with ClusterBal

From Figure 4.(d) and Figure 4.(e), we observe that when changing the Const value from 0.01 to 1, no obvi-

ous change could be observed for all the six employed classification algorithms when combining the two ensemble

rules MajDistance and SumDistance with data balancing method ClusterBal. However, when changing the Const

value from 1 to 100, classification algorithm Ripper shows clear decrease in average AUC value while the other five

classification algorithms remain unchanged.

In summary, we could conclude as follows: (1) When changing Const value from 0.01 to 100, in most cases the

average AUC value remains unchanged for combining our five ensemble rules with the two data balancing methods

SplitBal and ClusterBal. It means that in such cases the impact of the Const value on classification performance could

be negligible and we could select a random number as the Const value. This may be the reason that many researchers

have selected 1 as the added constant value in denominator. (2) In some cases, changing the Const value from 0.01

to 1 has little effect on the classification performance while the classification performance decreases obviously when

changing the Const value from 1 to 100. This means that in these cases, the numbers less than 1 could be randomly

selected as the Const value while the numbers greater than 1 should be taken seriously, especially for very large

numbers. Therefore, on the basis of the above two conclusion, it is reasonable that we select 1 as the Const value
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added to distance in our ensemble rules.

5. Conclusion

In this paper, we have presented an ensemble method for dealing with the binary-class imbalance problems.

Different from the conventional sampling methods, cost-sensitive learning methods, and Bagging and Boosting based

ensemble methods, the proposed method does not change the original class distribution, and does not suffer from

information loss or unexpected mistakes that may be caused by these conventional methods via increasing the minority

class instances or decreasing the majority ones.

The proposed method firstly converts the imbalanced binary-class data into multiple balanced binary-class data.

This is achieved by applying random splitting or clustering to the majority class instances. After that, a specific

classification algorithm is applied to the multiple balanced binary-class data to build multiple classifiers. Finally, the

classification results of these binary classifiers for a new data are combined with a specific ensemble rule. Five new

ensemble rules including MaxDistance, MinDistance, ProDistance, MajDistance and SumDistance, which depict the

relationship between a new problem and the historical data, are presented.

An empirical study has been conducted as well. The experimental results show that (i) It is reasonable that we

select 1 as the added constant value to the distance in our ensemble rules. (ii) For both of the two data balancing

methods ClusterBal and SplitBal, our ensemble rule MaxDistance performs best. (iii) The data balancing method

and ensemble rule combination ClusterBal+MaxDistance is better for Naive Bayes and SMO while the combination

SplitBal+MaxDistance prefers C4.5, RIPPER and Random Forest. (iv) Our proposed method is able to handle the

binary-class imbalance problems, and it usually performs more effectively than the conventional methods, including

the internal and external imbalance data handling methods.
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