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a b s t r a c t

The paper is concerned with the design of a fuzzy model-based predictive controller for activated sludge
wastewater treatment processes. The control purpose is to maintain the dissolved oxygen concentration
in an aerobic reactor of the wastewater treatment plant at the set-point. The fuzzy model of the activated
sludge processes is derived based on the Activated Sludge Model No. 1 (ASM1), including the structure of
the fuzzy rules. The required fuzzy space of input variables is partitioned by fuzzy c-means cluster
algorithm and the consequent parameters are identified using the method of least squares. Compared
with both traditional PID control and dynamic matrix control schemes, the proposed fuzzy model-based
predictive control paradigm achieves satisfactory benefits in terms of both transient and steady per-
formances.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The activated sludge treatment approach, which uses the bacteria
and other microorganisms to remove contaminants by assimilating
them, has beenwidely adopted in most wastewater treatment plants
(WWTPs). Modeling and control of the activate sludge processes
(ASPs) play an important role for improving the effectiveness of this
approach. So far, some models have been proposed, such as
Activated Sludge Models (ASMs) of International Water Association
(IWA) including ASM1, ASM2, ASM2d and ASM3. It has been well
recognized in the area that the ASM1 is the most successful one used
to represent the processes dynamics [11,12,14,15]. However, due to
the complexity of the model, e.g., high-dimensional with many
nonlinear terms and parameters that are hard to identify, it is quite
limited to apply ASM1 directly for controller design of WWTPs. To

overcome this difficulty, big efforts have been made towards
proposing more efficient models such as the modified ASM models,
the intelligent models and hybrid models (see [2,5–7]). Fuzzy
modeling approach [17,26,33,34], which is commonly adopted in
approximating a broad class of nonlinear systems, becomes more
and more popular to be used in modeling ASP. A large number of
results have been available in the literature demonstrating that fuzzy
models can adequately reflect the dynamics of the ASPs
[9,10,18,20,31]. An efficient method of identifying the structure of
fuzzy model is proposed in [37] and this modeling approach has
been successfully applied to predict chemical oxygen demand of
the ASPs.

In general, the complexity in controlling wastewater treatment
processes are mainly caused by seriously high nonlinearity and
various uncertainties due to, for instance, the time-varying influ-
ent parameters, the intricacy of structure and the huge number of
coefficients of the model. Model predictive control, capable of
dealing with multi-variable systems and constraints, has been
extensively applied to ASPs (see [23,24,29,30], for example). In the
existing results, there are many manipulated variables which are
frequently employed, such as dissolved oxygen concentration
[3,13,16,28], ammonia concentration [32], residual substrate [22],
internal recycle flow rate and external carbon dosing rate. Effective
control of dissolved oxygen can not only guarantee the common
behavior and activity of the microorganisms living in the activated
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sludge, but also significantly reduce the operational costs of the
wastewater treatment. It is worth mentioning that most of the
research results of model predictive control are focused on neural
network model [3,13], linear state-space model [16], bilinear
model [8] and reduced ASM1 [32], the fuzzy model-based pre-
dictive control of ASPs has not been sufficiently investigated.
In [19], the hierarchical fuzzy predictive control for nitrogen
removal in biological wastewater treatment processes has been
investigated. However, the parameters of the obtained fuzzy
model lack definite physical meaning.

Motivated by the aforementioned observations, in this paper,
the problem of fuzzy model-based predictive control of dissolved
oxygen in ASPs is considered. The control goal is to maintain the
concentration of dissolved oxygen in an aerobic reactor of the
WWTP at the set-point. In the considered fuzzy modeling pro-
cesses, the fuzzy space of required input variables is partitioned by
the fuzzy c-means cluster algorithm and the consequent para-
meters of the fuzzy rules are identified using the method of least
squares. Moreover, in contrast with recent studies on structure
identification of the fuzzy rules, the premise variables and con-
sequent structure in our approach can be obtained through ASM1
directly. By comparing performance with PID and dynamic matrix
control (DMC) strategies, it can be seen that the fuzzy model-
based predictive controller can efficiently control the dissolved
oxygen with smaller overshoot and shorter settling time. The
remainder of this paper is organized as follows. Section 2 briefly
introduces ASM1 and the underlying WWTP. The actual modeling
procedure and the model testification results are presented in
Sections 3.1 and 3.2. Section 3.3 gives the controller design
method and the related comparison results are given in Section
3.4. The last section of the paper presents some conclusions.

Notation: The notation used throughout the paper is fairly
standard. The superscript “T” stands for matrix transposition;
Rn denotes the n-dimensional Euclidean space; the notation
P40 (Z0) means that P is real symmetric and positive (semi-
positive) definite and A4B (ZB) means A�B40 (Z0). I and
0 represent identity matrix and zero matrix, respectively. Matrices,
if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations. The notation J � JQ stands for
the weighted norm, defined by JxJ2Q ¼ xTQx for all xARn, where Q
is a positive-definite symmetric matrix.

2. Preliminaries

In order to make the results easier to understand, in this section,
the relevant aspects of Activated Sludge Model No. 1 (ASM1) will be

briefly introduced. Then, the underlying wastewater treatment
plant (WWTP) which is designed based on the so-called Benchmark
Simulation Model No. 1 (BSM1) is further given.

2.1. ASM1

As commonly considered, a well-known characteristic of ASM1
is that the matrix form is used to present the activated sludge
processes (ASPs). The matrix is constructed with 13 components
and these components are generally described by the following
mass balance equation (see [14] for more details):

dξ
dt

¼ RðξÞþQ
V
ðξin�ξÞ ð1Þ

where

ξ9 ½SI SS XI XS XBH XBA XP SO SNO SNH SND XND SALK �T

is a vector gathering concentrations of the 13 components,

ξin≜

½SI;in SS;in XI;in XS;in XBH;in XBA;in XP;in SO;in SNO;in SNH;in SND;in XND;in SALK;in�T

stands for the concentrations of the process components in the
influent water, Q is the influent flow rate, V is the reactor volume.
RðξÞ is the reaction rate modeled by the product of a reaction rate
vector ρ and a stoichiometric matrix S where ρ and S are given in
(2) and (3), respectively. For simplicity, in this paper, the notation
with respect to time t or k will be dropped, e.g., ξ instead of ξðtÞ or
ξðkÞ will be used, if it will not lead to ambiguity. Nevertheless,
it should be kept in mind that the concentrations of the compo-
nents are related to time:

ρ9

μH
SS

KS þSS
SO

KOH þSO
XBH

μH
SS

KS þ SS
SO

KOH þ SO
SNO

KNO þSNO
ηgXBH

μA
SNH

KNH þSNH
SO

KOA þ SO
XBA

bHXBH

bAXBA

kaSNDXBH

kh
XS=XBH

KX þXS=XBH

SO
KOH þSO

þηh
KOH

KOH þ SO
SNO

KNO þSNO

� �
XBH

ρ7
XND
XS

� �

26666666666666666664

37777777777777777775

ð2Þ

Nomenclature

SI soluble inert organic matter
XI particulate inert organic matter
XBH active heterotrophic biomass
SNH ammonium and ammonia nitrogen
XP particulate products arising from biomass decay
SO dissolved oxygen
SND soluble biodegradable organic nitrogen
YH heterotrophic yield
ηg correction factor for anoxic growth of heterotrophs
bH decay rate for heterotrophs
μH maximum heterotrophic specific growth rate
KS half-saturation coefficient for heterotrophs
KOA oxygen half-saturation coefficient for autotrophs

KNH ammonium half-saturation coefficient for autotrophs
SS readily biodegradable substrate
XS slowly biodegradable substrate
XBA active autotrophic biomass
SNO nitrate and nitrite nitrogen
fp fraction of biomass yielding decay products
SALK alkalinity
XND particulate biodegradable organic nitrogen
YA autotrophic yield
ηh correction factor for anoxic hydrolysis
bA decay rate for autotrophs
μA maximum autotrophic specific growth rate
KOH oxygen half-saturation coefficient for heterotrophs
KNO nitrate half-saturation coefficient for heterotrophs
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S9

0 0 0 0 0 0 0 0
� 1

YH
� 1

YH
0 0 0 0 1 0

0 0 0 0 0 0 0 0
0 0 0 1� f P 1� f P 0 �1 0
1 1 0 �1 0 0 0 0
0 0 1 0 �1 0 0 0
0 0 0 f P f P 0 0 0

�1�YH
YH

0 �4:57�YA
YA

0 0 0 0 0

0 � 1�YH
2:86YH

1
YA

0 0 0 0 0

� iXB � iXB � iXB� 1
YA

0 0 1 0 0

0 0 0 0 0 �1 0 1
0 0 0 iXB� f PiXP iXB� f PiXP 0 0 �1

� iXB
14

1�YH
14�2:86YH

� iXB
14 � iXB

14� 1
7YA

0 0 1
14 0 0

266666666666666666666666666664

377777777777777777777777777775
ð3Þ

Remark 1. Note that in (2), some “switching functions” are used
to describe the environmental conditions change via affecting the
reaction rates. For example, the output of the switching function
SO=ðKOHþSOÞ, where KOH is a sufficiently small constant, can be
adjusted under the aerobic and anoxic conditions since SO is
different for aerobic and anoxic conditions. As a result, the reaction
rates, e.g., ρ1, ρ2, ρ7, ρ8, will change correspondingly. On the
contrary, SO=ðKOHþSOÞ can be seen as a constant if there are no
major changes in SO. The readers can refer to [25] for more details
on such “switching functions”.

2.2. Wastewater treatment plant

The basic structure of the underlying wastewater treatment
plant, including five reactors (i.e., two anoxic tanks and three
aeration tanks) and a 10-layer secondary settler, is shown in Fig. 1
(see also [1] for more details). For ease of exposition, we assume
that there is a reservoir before the reactors so that the influent
flow rate Q varies in a small interval. In fact, as a simulation
environment, the BSM1 is proposed based on ASM1 by the
International Water Association (IWA) Taskgroup on Benchmark-
ing of Control Strategies for wastewater treatment processes
(Working Groups of COST Action 682 and 624) [1]. A rigorous
performance evaluation methodology to enhance the acceptance
of innovating control strategies can also be provided by BSM1.

The purposes of this paper are to derive a suitable fuzzy model
for activated sludge wastewater treatment processes based on
ASM1 and BSM1, and to design fuzzy model-based predictive
controller for each aeration tank such that the concentration of
dissolved oxygen can be maintained at the set-point.

3. Main results

In this section, the methods and algorithms used to obtain the
fuzzy model of activated sludge processes in an aeration tank in

WWTP will be presented firstly. Then, a predictive controller will
be designed based on the derived fuzzy model.

3.1. Predictive model

Consider an aeration tank shown in Fig. 1, a simplified fuzzy
model will be given mathematically and tested by comparing
with ASM1.

As described in Section 2, we can get the differential equations
of dissolved oxygen dSO=dt and active autotrophic biomass
?A3B2showscale86%? > dXBA=dt according to rows eight and six of
(1) based on ASM1:

dSO
dt

¼ �1�YH

YH
μH

SS
KSþSS

� �
SO

KOHþSO

� �
XBH

�4:57�YA

YA
μA

SNH
KNHþSNH

� �
SO

KOAþSO

� �
XBAþ

Q
V

SO_in�SO
� � ð4Þ

dXBA

dt
¼ μH

SNH
KNHþSNH

SO
KOAþSO

XBA�bAXBAþ
Q
V
ðXBA_in�XBAÞ ð5Þ

In order to take better advantage of discrete form of the data,
(4) and (5) have been approximated by the following difference
equations based on the first-order Euler approximation approach:

SOðkþ1Þ�SOðkÞ
T

¼ �1�YH

YH
μH

SS
KSþSS

� �
SO

KOHþSO

� �
XBHþ

Q
V
ðSO_in�SOÞ

�4:57�YA

YA
μA

SNH
KNHþSNH

� �
SO

KOAþSO

� �
XBA

XBAðkþ1Þ�XBAðkÞ
T

¼ μH
SNH

KNHþSNH

� �
SO

KOAþSO

� �
XBA�bAXBA

þQ
V
ðXBA_in�XBAÞ

Thus, we have

SOðkþ1Þ ¼ T �1�YH

YH
μH

SS
KSþSS

� �
SO

KOHþSO

� �
XBHþ

Q
V
ðSO_in�SOÞ

�
�4:57�YA

YA
μA

SNH
KNHþSNH

� �
SO

KOAþSO

� �
XBA

	
þSOðkÞ;

XBAðkþ1Þ ¼ T μH
SNH

KNHþSNH

� �
SO

KOAþSO

� �
XBA�bAXBA

�
þQ
V
ðXBA_in�XBAÞ

	
þXBAðkÞ:

The above difference equations can be rewritten into vector form
as

SOðkþ1Þ
XBAðkþ1Þ

" #
¼

a ĉ
0 q̂

" #
SOðkÞ
XBAðkÞ

" #
þ b̂ d 0

0 0 w

" # XBH

SO_in
XBA_in

264
375 ð6Þ

m-6

m-10

m-1

oQ , oZ
Unit1 Unit2 Unit3 Unit4 Unit5

Aeration TankAnoxic Tank Secondary settler 

Reservoir

Controller

Fig. 1. Schematic representation of the wastewater treatment plant.
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where

a91þT � Q
V
; b̂9�T � 1�YH

YH
μH

SS
KSþSS

� �
SO

KOHþSO

� �
;

ĉ9�T � 4:57�YA

YA
μA

SNH
KNHþSNH

� �
SO

KOAþSO

� �
; d9T � Q

V
;

q̂9T μH
SNH

KNHþSNH

� �
SO

KOAþSO

� �
�bA�

Q
V
þ1
T

� 	
; w9T � Q

V
:

Let us presume that a, b̂, ĉ , d, q̂ and w are constant parameters,
then the nonlinear matrix equation (6) becomes a linear matrix
equation which is desirable for controller design. Note also that
YH ;YA are Stoichiometric parameters, μH , μA, KS, KOH, KNH, KOA and
bA are Kinetic parameters, all of which are fixed when the plant
and environmental conditions are determined. Due to the reser-
voir, the influent flow rate Q can be seen as a constant. Therefore, if
we choose SS, SNH as premise variables, divide SS, SNH into 2 fuzzy
sets labeled as NB, PB (stand for negative big and positive big,
respectively), then the 2-dimensional space will be divided into
2�2 fuzzy subspaces and the nonlinear equation can be approxi-
mated by a linear matrix equation for each subspace, respectively.

In particular, for aeration tanks, the concentration of dissolved
oxygen SO is so high that we can assume that the outputs of
switching functions do not change when SO has a little variation.
Also, we add variable z¼ ½z1 z2�T to represent the error between
the obtained fuzzy model and the real ASPs. The difference
equations of concentrations of dissolved oxygen SO and active
autotrophic biomass XBA can therefore be simplified as

SOðkþ1Þ
XBAðkþ1Þ

" #
¼

a c

0 q

" #
SOðkÞ
XBAðkÞ

" #
þ d 0

0 w

� 	 SO_in
XBA_in

" #
þz

where

a91þT � Q
V
; c9�T � 4:57�YA

YA
μA

SNH
KNHþSNH

� �
; d9T � Q

V

q9T μH
SNH

KNHþSNH

� �
�bA�

Q
V
þ1
T

� 	
; w9T � Q

V
:

According to Table 1, we can get the fuzzy model for dissolved
oxygen SO and active autotrophic biomass XBA with 4 rules

Rule r: IF SSðkÞ is Ci, SNHðkÞ is Dj, THEN

SOrðkþ1Þ
XBArðkþ1Þ

" #
¼

ar cr
0 qr

" #
SOrðkÞ
XBArðkÞ

" #
þ

dr 0
0 wr

" #
SO_in
XBA_in

" #
þzr ð7Þ

where r¼ 1;2;…;4, i¼1,2, j¼1,2. ar ; cr ; dr ; qr ; wr and zr are the
constants to be identified (the algorithm is given in Appendix B).

We employ the Gauss-shaped fuzzy sets with the membership
function as follows:

μCiðSSðkÞÞ9e�ðSS ðkÞ� f 1Þ2=2g21 ; μDjðSNHðkÞÞ9e�ðSNH ðkÞ� f 2Þ2=2g22

where f 1; f 2; g1, g2 are the parameters to be identified (the details
can be found in Appendix A). The degree of compatibility of each
rule μr ¼ μCi � μDj. The model output is defined by

SOðkÞ
XBAðkÞ

" #
¼ ∑

4

r ¼ 1
μ̂r

SOrðkÞ
XBArðkÞ

" #

where μ̂r ¼ μr=∑4
t ¼ 1μt ; r¼ 1;2;…;4; i¼ 1;2; j¼ 1;2.

3.2. Testification results

In this subsection, we shall testify the performance of proposed
modeling approach by comparing the simulation results of fuzzy
model and the simulation data supplied by ASM1. In order to
represent the dynamic behavior of the SO and XBA, the values of
influent parameters were set as the values shown in Table 2. It is
important to note that the values of SS, SNH, SO and XBA were not
constants, they were given as random values with variances 30, 20,
2 and 30, respectively. The other parameters and initial values
were given equal to the BSM1. The testification results of an aerobic

Table 1
Fuzzy rules for modeling of activated sludge processes.

SSðkÞ SNH ðkÞ

D1 ¼NB D2 ¼ PB

C1 ¼NB Rule 1 Rule 2
C2 ¼ PB Rule 3 Rule 4

Table 2
Values of influent parameters.

Parameter Value Parameter Value Parameter Value

SS 69.5 mg/L XS 202.32 mg/L XBH 2000 mg/L
XP 10 mg/L SNO 10 mg/L SNH 31.56 mg/L
SND 6.95 mg/L XND 10.59 mg/L XBA 60 mg/L
SO 2 mg/L Q 18,446 L V 1333 m2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.4

1.6

1.8

2

2.2

2.4

2.6

time(day)

S
O

(m
g/

L)

0.0815 0.082 0.0825 0.083
1.712

1.714

1.716

1.718

1.72

data from ASM1
data from fuzzy model

Fig. 2. The predicted values of SO by the fuzzy model and the values obtained
by ASM1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

60

70

80

90

100

110

120

130

140

150

time(day)

X
B

A
(m

g/
L)

0.08 0.081 0.082 0.083
90

90.5

91

91.5

data from ASM1
data from fuzzy model

Fig. 3. The predicted values of XBA by the fuzzy model and the values obtained
by ASM1.
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tank are shown in Figs. 2 and 3, where the solid line shows the data
derived by ASM1, the dotted line shows the predicted data using the
obtained fuzzy model. It can be seen from the figures that the
predictions approximate the data obtained by ASM1 well with quite
minor errors shown in the subgraphs (magnifying the regions
marked in the original curves). This demonstrates that the model
established by our approach can effectively describe the nonlinear
dynamics in the ASPs, which lays a good basis for further control
tasks in the WWTPs.

3.3. Fuzzy model-based predictive controller design

In the following, we will develop the fuzzy model-based
predictive control law for the activated sludge wastewater treat-
ment processes based on the previously obtained result [21].

Without loss of generality, we can define ζðkÞ ¼ ½SOðkÞ XBAðkÞ�T .
Then, the fuzzy model (7) can be rewritten as

ζðkþ1Þ ¼ AðkÞ � ζðkÞþBðkÞ � uðkÞþθðkÞ;
yðkÞ ¼ C � ζðkÞ

where

AðkÞ9
∑4

r ¼ 1μ̂rðkÞar ∑4
r ¼ 1μ̂rðkÞcr

0 ∑4
r ¼ 1μ̂rðkÞqr

" #
; θðkÞ9∑4

r ¼ 1μ̂rzr ;

BðkÞ9
∑
4

r ¼ 1
μ̂rðkÞdr 0

0 ∑
4

r ¼ 1
μ̂rðkÞwr

266664
377775; C9 ½1 0�:

By means of the previously obtained fuzzy model, the future P-step
outputs of the activate sludge wastewater treatment system can be
predicted and given by

ŷðkþPjkÞ ¼ Â � ζðkÞþ B̂ � ûðkÞþ θ̂

where

Â9

CAðkÞ
CAðkþ1ÞAðkÞ

⋮

C ∏
P�1

i ¼ 0
Aðkþ iÞ

26666664

37777775; θ̂ðkÞ9

CθðkÞ
Cθðkþ1Þ

⋮
CθðkþPÞ

266664
377775; ûðkÞ9

uðkÞ
uðkþ1Þ

⋮
uðkþMÞ

266664
377775; ŷðkþPjkÞ9

yðkþ1jkÞ
yðkþ2jkÞ

⋮
yðkþPjkÞ

266664
377775;

B̂9

CBðkÞ 0 … 0
CAðkþ1ÞBðkÞ CBðkþ1Þ … 0

CAðkþ2ÞAðkþ1ÞBðkÞ CAðkþ2ÞBðkþ1Þ … 0
⋮ ⋮ ⋱ ⋮

C ∏
P

i ¼ 1
Aðkþ iÞ

 !
BðkÞ C ∏

P

i ¼ 2
Aðkþ iÞ

 !
Bðkþ1Þ … CBðkþM�1Þ

26666666664

37777777775

with P40 and PZM40 are the prediction horizon and the con-
trol horizon, respectively.

The predictive error ê is given by the difference between the
real output and the predictive output of the system, i.e.,

êðkþ1Þ9yðkþ1Þ� ~yðkþ1jkÞ:
Using the predictive error at sample time k, the predictive

output at the next time kþ1 can be corrected, for example,

~yðkþPÞ9 ŷðkþPjkÞþhêðkþ1Þ

where

~yðkþPÞ9

~yðkþ1jkþ1Þ
~yðkþ2jkþ1Þ

⋮
~yðkþPjkþ1Þ

266664
377775; h9 ½h1 h2 … hP �T :

At each sample time, the following quadratic cost function is
optimized in order to determine the sequence of M future
actuation signals uðkþ iÞ, i¼ 1;2;…;M.

J9 ∑
P

i ¼ 1
Jyrðkþ iÞ� ~yðkþ ijkÞJ2W þ ∑

M

j ¼ 1
Juðkþ iÞJ2R

where

yrðkþ iÞ9ysetðkþ iÞ�viðysetðkÞ�yðkÞÞ; 0rvo1

and W40;RZ0 are the weighting matrixes. Further, we can get

J ¼ J ŷrðkÞ� ~yðkþPÞJ2W þ J ûðkÞJ2R
where

ŷrðkÞ9

yrðkþ1Þ
yrðkþ2Þ

⋮
yrðkþPÞ

266664
377775; ûðkÞ9

uðkþ1Þ
uðkþ2Þ

⋮
uðkþMÞ

266664
377775:

Note that this is a common quadratic programming problem.
Specially, when P ¼M ¼ 1, the above cost function can be rewrit-
ten as

J ¼ Jyrðkþ1Þ� ~yðkþ1jkÞJ2W þ JuðkÞJ2R
¼ Jysetðkþ1Þ�vðysetðkÞ�yðkÞÞ�CAðk�1ÞζðkÞ
�CðBðkÞuðkÞþθðkÞÞ�hŷðkjk�1ÞþhyðkÞJ2W þ JuðkÞJ2R

If we define E9ysetðkþ1Þ�vðysetðkÞ�yðkÞÞ�CAðkÞζðkÞ�hŷðkjk�1Þ
þhyðkÞ, then, we can get

J ¼ JE�CðBðkÞuðkÞþθðkÞÞJ2W þ JuðkÞJ2R
t ¼ ½ET �ðuT ðkÞBT ðkÞÞþθT ðkÞCT �W ½E�CðBðkÞuðkÞþθðkÞÞ�

þuT ðkÞRuðkÞ:

The dJ=duðkÞ can now be written as

dJ
duðkÞ ¼ �ETWCBðkÞ�BT ðkÞCTWEþ2BT ðkÞCTWCBðkÞuðkÞ

þBT ðkÞCTWCθðkÞþθT ðkÞCTWCBðkÞþðRþRT ÞuðkÞ:

By setting

dJ
duðkÞ ¼ 0

and deriving the control variable uðkÞ, we get the following
equation:

ðBT ðkÞCTWCBðkÞþRÞuðkÞ ¼ ETWCBðkÞþBT ðkÞCTWCθðkÞ:
Then, the control law can be explicitly expressed as

uðkÞ ¼ ðBT ðkÞCTWCBðkÞþRÞ�1ðETWCBðkÞþBT ðkÞCTWCθðkÞÞ:
For general cases (i.e., P41 and M41), the control law can be

implicitly obtained by solving the above-mentioned quadratic
programming problem by letting the degree of membership be
equivalent to the one at the previous sampling time. It is noted
that such degrees will vary and lead to a variation of model for
prediction.
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3.4. Fuzzy model-based predictive control of dissolved oxygen

In Section 3.3 the fuzzy model-based predictive control law had
been systematically developed, now some simulation results using
the derived predictive control law are presented in order to
illustrate the effectiveness of the proposed design method. Con-
sider an aeration tank shown in Fig. 1, whose fuzzy modeling was
done in Section 3.1. The values of influent parameters were given
in Section 3.2 without disturbance. The purpose here is to prove
that the fuzzy model-based predictive control law can stabilize the
concentration of dissolved oxygen SO at the set-point. At first, the
activated sludge system was operated without control until the
concentration of dissolved oxygen SO was stable (after 1 day).
Then, the control law was completed and it can be seen that the
concentration of dissolved oxygen SO persistently tracked the set-
points well. The control parameters were given as P ¼M¼ 1,
W¼60, R¼0.1, v¼0, h¼0.718 (set-point is 2 mg/L) and h¼0.685
(set-point is 2.5 mg/L). Fig. 6 shows the changing curves of the
concentration of dissolved oxygen SO. For the sake of comparison,
the state responses when using PID and dynamic matrix control
(DMC) algorithms, considering the same set-up for the proposed
fuzzy model-based predictive controller design, have also been

provided (see Figs. 4 and 5). In the PID control, the proportional
gain Kp, integral gain Ki and derivative gain Kd are chosen as
Kp ¼ 2:6, Ki ¼ 10 and Kd ¼ 1. The configuration of the used DMC
controller, in which the step response model of an aeration tank is
employed as the predictive model with model horizon N¼23, is
given by P¼15, M¼2, W ¼ IAR15�15, R¼ IAR2�2, v¼0,
h¼ ½0:5;0:5;…;0:5�AR15. By comparison, one can clearly see that
the designed fuzzy model-based control law can realize the
control goal with improved transient performance including small
overshoot and short settling time.

4. Conclusions

In this paper, a fuzzy model-based predictive controller was
proposed to control the concentration of dissolved oxygen in the
activated sludge wastewater treatment processes. The aim is to
maintain the concentration of dissolved oxygen at the set-point.
In order to get the suitable fuzzy model of activated sludge
processes, the structure of fuzzy rules required in the approach
was first identified based on ASM1. Then, by combining the fuzzy
c-means cluster algorithm and the method of least squares, the
fuzzy space of input variables in the approach were further
partitioned and the consequent parameters can be identified using
the data derived by ASM1. Compared with the conventional PID
and DMC controllers, it has been shown that the fuzzy model-
based predictive controller provided significant performance ben-
efits and can be effectively used for dissolved oxygen control in
activated sludge wastewater treatment plants. It is expected that
the methods and ideas behind the paper could be applied to solve
multi-objective control issues for the underlying system.

Appendix A. Data processing

The fuzzy c-means cluster algorithm [4,27,35,36] is adopted to
process the data in order to get the membership function whose
shape is fixed upon the cluster centers z and the distances
between two nearby cluster centers. The cluster centers of premise
variables (i.e., SS, SNH) need to be identified. The algorithm is as
follows:
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Fig. 4. The PID control of the activated sludge wastewater treatment processes.
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Fig. 5. The DMC control of the activated sludge wastewater treatment processes.
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Step 1: Initialize the number of clusters C¼2, the exponent
m¼2 and the cluster centers

zð0Þ ¼ ½datamin datamax�
where datamin=datamax is the min/max value of the data to be
clustered. The ‘data’ here mean the premise variables SS; SNH.

Step 2: Repeat

r¼ rþ1:

Compute the elements of partition matrix, which will be used to
calculate the cluster centers, νðrÞik :

νðrÞik ¼ ∑
C

j ¼ i

dik
djk

� �2=ðm�1Þ !�1

; 1r irC; 1rkrN

where d2ik ¼ Jxk�zðr�1Þ
i J2. If djk ¼ 0, νik ¼ 1. N is the number of data

and xk is the kth set of data. Compute the cluster centers zðrÞi :

zðrÞi ¼∑N
k ¼ 1xkðνikÞm
∑N

k ¼ 1ðνikÞm
; 1r irC; 1rkrN:

Step 3: Output cluster centers until JνðrÞik �νðr�1Þ
ik Joϵ where

ϵ40 is the termination tolerance. In verifications in the paper, we
set ϵ¼ 0:01.

Appendix B. Parameters estimation

The least squares algorithm will be used in the paper for the
purpose of parameters estimation as follows.

Let us rewrite (7) as

yðkÞ ¼ hðkÞθþeðkÞ
where

yðkÞ9SOðkþ1ÞAR1 ð8Þ

θðkÞ9 ½a1ðkÞ c1ðkÞ d1ðkÞ e1ðkÞ a2ðkÞ c2ðkÞ … e4ðkÞ�T AR16; ð9Þ

hðkÞ9 ½bμ1SOðkÞ bμ1XBAðkÞ bμ1SOinðkÞ bμ1 bμ2SOðkÞ … bμ4�AR1�16

ð10Þ
or

yðkÞ9XBAðkþ1ÞAR1 ð11Þ

θðkÞ9 ½q1ðkÞ w1ðkÞ ee1ðkÞ q2ðkÞ w2ðkÞ … ee4ðkÞ�T AR12; ð12Þ

hðkÞ9 ½bμ1XBAðkÞ bμ1XBAinðkÞ bμ1 bμ2XBAðkÞ … bμ4�AR1�12 ð13Þ
yðkÞ and h(k) are observable variables which can be got from the
historical data (the data of two text files discussed in Section 2.2).
The criterion function is set as

JðθÞ9 ∑
n

k ¼ 1
½eðkÞ�2 ¼ ∑

n

k ¼ 1
½yðkÞ�hðkÞθ�2 ¼ ðY�HθÞT ðY�HθÞ

where n is the number of data used to identify the parameters,
YARn, H ARn�16 for SO and H ARn�12 for XBA. Minimize the
criterion function, we can get the regular equation:

ðHTHÞbθ ¼HTY :

Thus, the estimation of θ can be readily derived bybθ ¼ ðHTHÞ�1HTY

which gives the parameters identification needed in the proposed
fuzzy modeling approach.
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