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Fault-tolerant control methods have been extensively researched over the last 10 years in the context of chemical process con-
trol applications, and provide a natural framework for integrating process monitoring and control aspects in a way that not
only fault detection and isolation but also control system reconfiguration is achieved in the event of a process or actuator fault.
But almost all the efforts are focused on the reactive fault-tolerant control. As another way for fault-tolerant control, proactive
fault-tolerant control has been a popular topic in the communication systems and aerospace control systems communities for
the last 10 years. At this point, no work has been done on proactive fault-tolerant control within the context of chemical process
control. Motivated by this, a proactive fault-tolerant Lyapunov-based model predictive controller (LMPC) that can effectively
deal with an incipient control actuator fault is proposed. This approach to proactive fault-tolerant control combines the unique
stability and robustness properties of LMPC as well as explicitly accounting for incipient control actuator faults in the formula-
tion of the MPC. Our theoretical results are applied to a chemical process example, and different scenaria were simulated to
demonstrate that the proposed proactive fault-tolerant model predictive control method can achieve practical stability and effi-
ciently deal with a control actuator fault. VC 2013 American Institute of Chemical Engineers AIChE J, 59: 2810–2820, 2013
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Introduction

The petrochemical industry worldwide suffers from both
large and numerous minor process disturbances and faults that
have a significant accumulated effect on production outages
and excess energy use over time.1 Furthermore, the strong
interactions between components (i.e., units, actuators, sensors,
and controllers) in a chemical process profoundly influence the
inherent stability and robustness properties of a closed-loop
system and may pose serious reliability, continuity, controll-
ability, and stability issues.2 In particular, reliability and
continuity are important requirements in chemical process
industries, which especially apply to complicated safety-
critical systems, such as chemical process control systems.3

Motivated by the above, the issues of fault-tolerant and
fault accommodating controller design have been an active
research topic within the chemical process control commu-
nity over the last decade; see, for example, the book in Ref.
4 and the references therein. Fault-tolerant control methods
can be broadly classified into reactive and proactive. Specifi-
cally, the traditional approach centers around reactive fault-
tolerant control aiming at minimizing the impact of a fault

in a process component, actuator or sensor after it occurs,

and includes two components: (a) fault detection and isola-

tion (FDI), and (b) reconfiguration of the control system;

see, for example, Refs. 4–9 for results in this area. While

fault detection and isolation as well as reactive fault-tolerant

control schemes remain an active area of research, proactive

fault-tolerant control is part of an emerging area that will

enable next generation manufacturing (i.e., smart manufac-

turing/advanced manufacturing). This was pointed out by

Bryner10: “Today’s operations will be transformed from re-

active to proactive, response to prevention, ….” Proactive

fault-tolerant control is emerging as a complement to reac-

tive fault-tolerant control in which appropriate action is

taken by the control system before an incipient fault occurs

and can help to avoid process shut-down, product loss, and

catastrophes involving human and component damage. Spe-

cifically, proactive fault-tolerance deals with measures under-

taken to predict and minimize the negative impact of future

fault situations. It sets up the reconfiguration of control sys-

tem to avoid the production loss due to the fault and to

allow for a smooth transition to postfault control system. Up

to this point, however, little work has been done on proac-

tive fault-tolerant control in the context of chemical process

control, despite recent industrial calls for moving into this

direction. It is important to note at this point that results on

proactive and reactive scheduling approaches of chemical

multi-product batch plants with uncertain operation times

and equipment failures have been developed11,12 as well as
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that proactive fault-tolerant control technologies have been

extensively researched in communication, computer, and

aerospace control system communities; see Refs. 5, 13–15

and the references therein.
With respect to the determination of incipient faults, his-

tory-based approaches is one of the main types of fault detec-
tion and diagnosis techniques that can be used to determine
faults.16,17 Within this framework, large quantities of historical
process data are first collected on sensor and actuator faults.
The average failure data indicate that components may fail af-
ter a certain period of time with a certain probability as their
reliability decreases with time.18 At this point, it is not hard
to envision leveraging these data to determine failure windows
of process control system components and the best time inter-
vals to schedule preventive process control system mainte-
nance. In terms of the determination of the time of the
incipient fault, existing probabilistic prediction methods
mainly include methods based on Markov19 and Bayesian
analysis.20 In detail, multivariate systems can be monitored by
building a principal component analysis (PCA) model using
historical data. T2 and sum-of-squared-prediction error (SPE)
of the calibration model facilitate fault detection and isolation
on-line.21 In Ref. 20, one-step prediction fault probabilities
are estimated by kernel density estimation method according
to the statistics corresponding control limits. While these
methods of fault determination are used with reactive fault-
tolerant control, they could be also used to get an estimate of
a time window where a control actuator will likely fail to be
used in a proactive fault-tolerant control scheme.

Motivated by the above considerations, in this work, we
formulate a proactive fault-tolerant model predictive controller
(MPC) designed via Lyapunov-based techniques for nonlinear
systems capable of taking proactive measures to minimize the
effect of an incipient control actuator fault. Specifically, the
proactive fault-tolerant Lyapunov-based MPC (LMPC) is used
to take a suspect control actuator out of operation to repair,
rebuild, or replace it (e.g., pump rebuild, valve replacement,
etc.) while maintaining process operation at desired steady-
state. This approach to proactive fault-tolerant control com-
bines the unique stability and robustness properties of LMPC
as well as explicitly accounting for an incipient control actua-
tor fault in the formulation of the MPC. We apply our theoret-
ical results to a chemical process example, and different case
studies with various types of actuator faults were simulated to
demonstrate that the proposed proactive fault-tolerant model
predictive control method can achieve practical stability after
a control actuator fault.

Preliminaries

Notation

The operator j � j is used to denote the Euclidean norm of
a vector and j � jQ denotes the square of the weighted Euclid-
ean norm of a vector (i.e., j � jQ 5 xTQx). A continuous func-
tion a : 0; a½ Þ ! 0;1½ Þ belongs to class K functions if it is
strictly increasing and satisfies a 0ð Þ5 0. We use Xq to
denote the level set Xq :5 x 2 Rnx jV xð Þ � qf g. The symbol
diag vð Þ denotes a square diagonal matrix with diagonal ele-
ments equal to the vector v.

Class of nonlinear systems

In this work, we consider a class of input-affine nonlinear
systems described by the following state-space model

_x tð Þ5 f x tð Þð Þ1 G1 x tð Þð Þ u tð Þ1 ~u tð Þð Þ1 G2 x tð Þð Þw tð Þ (1)

where x tð Þ 2 Rn is the state vector, u tð Þ 2 Rm is the manipu-
lated input vector, ~u tð Þ 2 Rm is the control actuator fault
vector, and w tð Þ 2 W � Rw is the disturbance vector that is
bounded by jw tð Þj � wp. We consider that u 1 ~u is bounded
in a nonempty convex set U � Rm defined as
U :5 u 2 Rmjjui 1 ~uij � umax

i ; i 5 1;…;m
� �

. We assume
that f : Rn ! Rn, G1 : Rn ! Rn 3 Rm, and G2 : Rn !
Rn 3 Rw are locally Lipschitz vector and matrix functions,
respectively. We use j 5 0 to denote the fault-free system
and j 5 1;…;m to denote the system with a fault in the jth
control actuator.

We assume that the nominal system of Eq. 1 (~u � 0) has
an equilibrium point at the origin. We also assume that the
state x of the system is sampled synchronously and continu-
ously and the time instants where the state measurements
become available is indicated by the time sequence tk� 0f g
with tk 5 t0 1 kD, k 5 0; 1;… where t0 is the initial time and
D is the sampling time.

Lyapunov-based controller

We assume that there exists a Lyapunov-based controller
u tð Þ5 h0 xð Þ which renders the origin of the fault-free closed-
loop system asymptotically stable under continuous imple-
mentation. This assumption is essentially a stabilizability
requirement for the system of Eq. 1. Furthermore, we
assume after the jth control actuator fails that there exists
another Lyapunov-based controller u tð Þ5 hj xð Þ that renders
the origin of the resulting faulty closed-loop system asymp-
totically stable. Using converse Lyapunov theorems,22–24 this
assumption implies that there exist functions ai;j �ð Þ,
i 5 1; 2; 3; 4, j 5 0; 1; 2;…;m of class K and continuous dif-
ferentiable Lyapunov functions Vj xð Þ for the closed-loop sys-
tem that satisfy the following inequalities

a1;j jxjð Þ � Vj xð Þ � a2;j jxjð Þ (2)

@Vj xð Þ
@x

f xð Þ1 G1 xð Þhj xð Þ
� �

� 2a3;j jxjð Þ (3)

j @Vj xð Þ
@x

j � a4;j jxjð Þ (4)

hj xð Þ 2 Uj (5)

for all x 2 D � Rn where D is an open neighborhood of the
origin. We denote the region Xqj

� D as the stability region
of the closed-loop system under the control u 5 hj xð Þ. Note
that explicit stabilizing control laws that provide explicitly
defined stability regions Xqj

for the closed-loop system have
been developed using Lyapunov techniques for input-affine
nonlinear systems; see Refs. 25–27.

We assume that after some time tf the jth control actuator
fails or the reliability of the actuator has decreased to a level
that it becomes desirable to replace or repair the actuator.
This time can be estimated from historical life cycle data of
the actuator or based on when preventive maintenance is
scheduled to be performed on the actuator. We note that there
exists a horizon tf2t0 sufficiently large such that the control-
ler h0 xð Þ can force the system into the stability region Xqj

by
the time tf starting from any initial state x t0ð Þ 2 Xq0

(more
precisely, it will drive the system to the intersection between
Xqj

and Xq0
). We also assume that V0 5 V1 5 � � � 5 Vm 5 V.

By continuity and the local Lipschitz property assumed
for the vector fields, the manipulated input u is bounded in a
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convex set, and the continuous differentiable property of the
Lyapunov function V, there exist positive constants M, Lx,
and Lw such that

jf xð Þ1 G1 xð Þ u 1 ~uð Þ1 G2 xð Þwj � M (6)

@V

@x
f xð Þ1 G1 xð Þ u 1 ~uð Þ1 G2 xð Þw tð Þð Þ2 @V

@x
f x0ð Þ1 G1 x0ð Þ u 1 ~uð Þð Þ

����
����

� Lxjx2x0j1 Lwjwj (7)

for all x; x0 2 Xqj
, u 1 ~u 2 U, and w 2 W.

Remark 1. For input-affine nonlinear systems arising in the
context of chemical process control applications, weighted Eu-
clidean norm Lyapunov functions (i.e., V xð Þ5 xT tð ÞPx tð Þ) have
been widely used; see Ref. 25 and the references therein. See
the Application to a Chemical Process section for an example.

Remark 2. The assumption that there exists a controller
hj xð Þ that stabilizes the faulty system is a necessary require-
ment. Typically, this can be accomplished in chemical pro-
cess control in one of two ways: (1) the principle of
redundancy is used in fault-tolerant systems to ensure stabil-
ity after a fault (i.e., if a control actuator fails, there is
another actuator that can be used to maintain stability), and
(2) many chemical processes are designed to be open-loop
asymptotically stable so the failure of a control actuator does
not affect the stability of the closed-loop system.

Remark 3. We note that there is no guarantee that the stabil-
ity region Xqj

of the faulty system is a subset of the fault-free
stability region Xq0

because the controllers h0 xð Þ and hj xð Þ can
be different. We do know that the two regions intersect in a
neighborhood of the origin and it is this intersection that we use
in our design of the proactive fault-tolerant controller.

Remark 4. We note that implementing the proactive
fault-tolerant LMPC for preventive maintenance does not
require that we accurately predict the time the actuator will
fail, but rather, we estimate a time window that the actuator
reaches the end of its life cycle and no longer becomes reli-
able. In this case, we would use the most conservative or
earliest estimate and the LMPC would consider that as the
time of the incipient fault. As we demonstrate in the exam-
ple, the proactive fault-tolerant LMPC also operates the pro-
cess optimally from a cost index perspective.

Proactive Fault-tolerant MPC

In this section, we introduce the proposed proactive fault-
tolerant Lyapunov-based model predictive controller and
prove practical stability of the closed-loop system of Eq. 1
with the proactive fault-tolerant LMPC.

Implementation strategy

The implementation strategy of the proposed proactive
fault-tolerant LMPC is represented by Figure 1. Specifically,
from t0 to tf, the LMPC with sampling period D and predic-
tion horizon N starts from an initial condition in the stability
region Xq0

and recomputes optimal control actions at every
sampling period by solving an on-line optimization problem
while accounting for the actuator fault that occurs at tf. It
does so by working to drive the system into the stability
region Xqj

by the time tf (the time of the fault). After the
fault renders the jth actuator inactive, the proactive fault-tol-
erant LMPC drives the system to the origin using its avail-
able (remaining) m 2 1 actuators. The implementation
strategy steps of the proposed proactive fault-tolerant LMPC
can be summarized as follows:

1. At tk, the proactive fault-tolerant LMPC receives the
process state from the sensors;

2. If tk 1 1 < tf (the time of the fault), go to Step 2.1; oth-
erwise go to Step 2.2;

2.1. Compute control actions that account for the
fault at tf and drive the system to the stability region
Xqj

by tf; go to Step 3;
2.2. Drive the system to the origin with the remain-

ing m21 control actuators; go to Step 3;
3. Go to Step 1, tk :5 tk 1 1.
By comparing the time of the fault with the next sampling

time tk 1 1ð Þ, the proactive fault-tolerant LMPC completes
control system reconfiguration before the fault.

With this implementation strategy, we point out that the
key difference between this proactive approach to dealing
with actuator faults and traditional reactive fault tolerant
control is that when there is a known fault it may be neces-
sary to adjust the control energy to drive the system to the
stability region Xqj

before the jth control actuator fails com-
pared to a controller which does not account for an upcom-
ing fault. This guarantees that the remaining m 2 1 control
actuators can stabilize the system after the fault occurs. This
strategy differs from reactive fault tolerant control that can-
not proactively drive the system to a region whereby stabil-
ity is guaranteed after the jth actuator fails. After a fault
occurs and has been identified with reactive fault-tolerant
control, the closed-loop system may lose stabilizability of
the origin with the remaining control actuators if the closed-
loop state is outside the stability region Xqj

.
Remark 5. We note that we are not introducing a fault-tol-

erant control scheme that can replace classical reactive fault-
tolerant control schemes that deal with any type (potentially
unexpected) of fault. Instead, the proactive fault-tolerant
LMPC is used as an added mechanism to maintain process
operation without losing stability and with minimal perform-
ance degradation compared to a full plant shutdown while
operators carry out maintenance/replace a faulty actuator.

Formulation

We formulate an LMPC based on the conceptual frame-
work proposed in Refs. 22 and 28 for use as a proactive

Figure 1. Conceptual diagram of the implementation
strategy of proactive fault-tolerant LMPC.

The proactive fault-tolerant LMPC works to drive the

system into the stability region Xqj
by the time tf and

uses the remaining m 2 1 actuators to drive the system to

the origin after the fault renders the jth actuator inactive.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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fault-tolerant controller. The LMPC is based on the Lyapu-
nov-based controllers h0 xð Þ and hj xð Þ because the controllers
are used to define a stability constraint for the LMPC which
guarantees that the LMPC inherits the stability and robust-
ness properties of the Lyapunov-based controllers. The pro-
active fault-tolerant LMPC is based on the following
optimization problem

min
u2S Dð Þ

ðtk 1 N

tk

j~x sð ÞjQc
1 ju sð ÞjRc

h i
ds (8a)

s:t: _~x tð Þ5 f ~x tð Þð Þ1 G1 ~x tð Þð Þ u tð Þ1 ~u tð Þð Þ (8b)

u tð Þ 2 U (8c)

~uj tð Þ5 0; if t < tf
2uj tð Þ; if t � tf

�
(8d)

~x tkð Þ5 x tkð Þ (8e)

@V

@x
f x tkð Þð Þ1 G1 x tkð Þð Þu tkð Þð Þ � @V

@x
ðf x tkð Þð Þ

1 G1 x tkð ÞÞh0 x tkð Þð Þð Þ; if tk 1 1 < tf ; (8f)

@V

@x
f x tkð Þð Þ1 G1 x tkð Þð Þu tkð Þð Þ � @V

@x
ðf x tkð Þð Þ

1 G1 x tkð ÞÞhj x tkð Þð Þ
� �

; if tk 1 1 � tf (8g)

where S Dð Þ is the family of piece-wise constant functions
with sampling period D, N is the prediction horizon of the
LMPC, ~u tð Þ is the actuator fault trajectory, ~x tð Þ is the state
trajectory predicted by the nominal model w tð Þ � 0ð Þ with
manipulated input u(t) computed by the LMPC. The optimal
solution of the optimization problem of Eq. 8 is denoted by
u� tjtkð Þ and is defined for t 2 tk; tk 1 N½ Þ.

In the optimization problem of Eq. 8, the first constraint
of Eq. 8b is the nonlinear system of Eq. 1 used to predict
the future evolution of the system. The constraint of Eq. 8c
defines the control energy available to all manipulated
inputs. The constraint of Eq. 8d is the complete fault of the
jth control actuator that causes the actuator to be unusable
for t � tf . The constraint of Eq. 8e is the initial condition of
the optimization problem. The constraints of Eq. 8f and 8g
ensure that over the sampling period t 2 tk; tk 1 D½ Þ, the
LMPC computes a manipulated input that decreases the Lya-
punov function by at least the rate achieved by the Lyapu-
nov-based controllers h0 xð Þ when tk 1 1 < tf and hj xð Þ when
tk 1 1 � tf when the Lyapunov-based controllers are imple-
mented in a sample-and-hold fashion. We note that in the
optimization problem of Eq. 8, the time instance that is used
to determine which Lyapunov-based constraint to use is tk 1 1

to account for a fault that may occur between two sampling
times. In this manner, the controller is proactively regulating
the closed-loop system trajectory.

Stability analysis

In this section, we provide sufficient conditions whereby
the proactive fault-tolerant controller of Eq. 8 guarantees
practical stability of the closed-loop system. Theorem 1
below provides sufficient conditions such that the proactive
fault-tolerant LMPC guarantees that the state of the closed-
loop system is always bounded and is ultimately bounded in
a small region containing the origin.

Theorem 1. Consider the system in closed-loop under the
proactive fault-tolerant LMPC design of Eq. 8 based on con-
trollers hj xð Þ, j 5 0; 1;…;m that satisfies the conditions of

Eqs. 2–5. Let D > 0, �0 > 0, q0 > qs;0 > 0, �j > 0, and qj >
qs;j > 0 satisfy

2a3;0 a21
2;0 qs;0

� �� 	
1 LxMD 1 Lwwp � 2�0=D (9)

2a3;j a21
2;j qs;j

� �� 	
1 LxMD 1 Lwwp � 2�j=D (10)

If x t0ð Þ 2 Xq0
, qmin � qj and tf2t0 is sufficiently large such

that x tfð Þ 2 Xqj
, then the state x(t) of the closed-loop system

is always bounded and is ultimately bounded in Xqmin
where

qmin 5 max V x t 1 Dð Þð Þ : V x tð Þð Þ � qs;j

� �
.

Proof. The proof consists of three parts. We first prove that
the optimization problem is feasible. Subsequently, we prove
that, under the LMPC design, the closed-loop state of the sys-
tem is always bounded and will converge to a small set con-
taining the origin after a finite number of sampling periods.
Finally, we prove that under the LMPC, the closed-loop state
of the system is ultimately bounded in the set Xqmin

.
Part 1. When x(t) is maintained in Xq0

for t < tf and in Xqj

for t � tf (which will be proved in Part 2), the feasibility of the
LMPC follows because the input trajectory u tð Þ5 hj x tk 1 q

� �� �
,

8t 2 tk 1 q; tk 1 q 1 1


 �
with q 5 0;…;N21 (j 5 0 for t < tf ) is a

feasible solution to the optimization problem as such a trajectory
satisfies the input constraint and the Lyapunov-based con-
straints. This is guaranteed by the closed-loop stability property
of the Lyapunov-based controllers h0 xð Þ and hj xð Þ.

Part 2. We prove that if x tkð Þ 2 Xq0
nXqs;0

and tk 1 1 < tf ,
then V x tk 1 1ð Þð Þ < V x tkð Þð Þ and after a finite time, either the
system will converge to the set Xqs;0

, which is contained in
the set Xqj

, or it will converge to the set Xq0
\ Xqj

by tf.
When x tkð Þ 2 Xq0

nXqs;0
and tk 1 1 < tf , from the last con-

straint of the LMPC of Eq. 8 and accounting for Eq. 3, the deriv-
ative of the Lyapunov function along the system trajectory at tk is

@V x tkð Þð Þ
@x

f x tkð Þð Þ1 G1 x tkð Þð Þu� tkð Þð Þ � @V x tkð Þð Þ
@x

3 f x tkð Þð Þ1 G1 x tkð Þð Þh0 x tkð Þð Þð Þ � 2a3;0 jx tkð Þjð Þ
(11)

The time derivative of the Lyapunov function along the
computed optimal trajectories u� for 8s 2 tk; tk 1 1½ Þ can be
written as follows

_V x sð Þð Þ5 @V x sð Þð Þ
@x

f x sð Þð Þ1 G1 x sð Þð Þu� tkð Þ1 G2 x sð Þð Þw tð Þð Þ

(12)

Adding and subtracting the term
@V x tkð Þð Þ

@x f x tkð Þð Þ1ð
G x tkð Þð Þu� tkð ÞÞ to/from the above equation and considering
the bound of Eq. 11, we have

_V x sð Þð Þ � 2a3;0 jx tkð Þjð Þ2 @V

@x
f x tkð Þð Þ1 G1 x tkð Þð Þu� tkð Þð Þ

1
@V

@x
f x sð Þð Þ1 G1 x sð Þð Þu� tkð Þ1 G2 x sð Þð Þw sð Þð Þ

(13)

From the Lipschitz property of Eq. 7 and accounting for the
bounded disturbance, we can write

_V x sð Þð Þ � 2a3;0 jx tkð Þjð Þ1 Lxjx sð Þ2x tkð Þj1 Lwwp (14)

Taking into account Eq. 6 and the continuity of x(t), the fol-
lowing bound can be written for all s 2 tk; tk 1 1½ Þ
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jx sð Þ2x tkð Þj � MD (15)

Using the bound of Eq. 15 and as x tkð Þ 2 Xq0
nXqs;0

, the
bound of Eq. 14 becomes

_V x sð Þð Þ � 2a3;0 a21
2;0 qs;0

� �� 	
1 LxMD 1 Lwwp (16)

If the condition of Eq. 9 is satisfied, then there exists �0 > 0
such that the following inequality holds for x tkð Þ 2 Xq0

nXqs;0

_V x tð Þð Þ � 2�0=D;8t 5 tk; tk 1 1½ Þ (17)

Integrating this bound on t 2 tk; tk 1 1½ Þ, we obtain that

V x tk 1 1ð Þð Þ � V x tkð Þð Þ2�0

V x tð Þð Þ � V x tkð Þð Þ; 8t 2 tk; tk 1 1½ Þ (18)

for all x tkð Þ 2 Xq0
nXqs;0

. Using Eq. 18 recursively, it is
proved that, if x tkð Þ 2 Xq0

nXqs;0
, the state converges to

Xqs;0
� Xq0

in a finite number of sampling times without
leaving the stability region Xq0

.
The horizon tf2t0ð Þ is chosen to be sufficiently large such

that starting from any x t0ð Þ 2 Xq0
, the state will be driven

into the set Xqj
by tf. Similar arguments as above can be

used to show that after tf, operation is always maintained in
the set Xqj

and converges to the set Xqs;j
� Xqj

after some fi-
nite number of sampling periods if the conditions of Eq. 10
are satisfied.

Part 3. We prove that if x tkð Þ 2 Xqj
for tk � tf , then the

system state will ultimately be bounded in an invariant set
Xqmin

. From Part 2, we proved that if x t0ð Þ 2 Xq0
, the state

converges to Xqj
before tf and after a finite number of sam-

pling times, the system will be driven to the set Xqs;j
. Once

the state converges to Xqs;j
, it remains inside Xqmin

for all
times. This statement holds because of the definition of qmin .
This proves that the closed-loop system state under the
LMPC of Eq. 8 is ultimately bounded in Xqmin

.
Remark 6. We note that in many realistic actuator faults,

a fault is initially gradual meaning that the maximum avail-
able actuator output decreases slowly with time until the
maximum output begins to drastically decrease (sigmoid
relationship). In this manner, the bounds on the available ac-
tuator output become time-dependent. This is a mild exten-
sion of what is covered in the stability proof. As long as the
evolution of the constraint set is a known function of time a
priori, the time-dependent bound may be used in the LMPC
formulation. From a stability point of view, the goal of the
proactive fault-tolerant controller is to drive the closed-loop
system to the stability region without the faulty control actu-
ator Xj by the time the fault starts whether that fault is ab-
rupt or gradual. If this is accomplished at the time of the
fault, then we can guarantee closed-loop stability. This fol-
lows from a simple argument that if we can stabilize the sys-
tem with m 2 1 actuators, we can also stabilize with m 2 1
plus the gradually decaying one. This remark refers to case
B in our application of this theory to a chemical process in
the next section, where this type of fault is implemented and
handled.

Application to a Chemical Process

Consider a three vessel, reactor-separator chemical process
consisting of two CSTRs in series followed by a flash tank

separator as shown in Figure 2. Two parallel first-order reac-
tions occur in each of the reactors that have the form

A!r1
B

A!r2
C

Each reactor is supplied with a fresh stream of the reactant
A contained in an inert solvent D. A recycle stream is used to
recover unreacted A from the overhead vapor of the flash tank
and feed it back to the first CSTR. Some of the overhead vapor
from the flash tank is condensed, and the bottom product
stream is removed. All three vessels are assumed to have static
holdup and are equipped with a jacket to supply/remove heat
from the vessel. The dynamic equations describing the behavior
of the system, obtained through material and energy balances
under standard modeling assumptions, are given below

dT1

dt
5

F10

V1

T102T1ð Þ1 Fr

V1

T32T1ð Þ1 2DH1

qCp

k1e
2E1
RT1 CA1

1
2DH2

qCp

k2e
2E2
RT1 CA1 1

Q1

qCpV1

(19)

dCA1

dt
5

F10

V1

CA102CA1ð Þ1 Fr

V1

CAr2CA1ð Þ2k1e
2E1
RT1 CA12k2e

2E2
RT1 CA1

(20)

dCB1

dt
5

2F10

V1

CB1 1
Fr

V1

CBr2CB1ð Þ1 k1e
2E1
RT1 CA1 (21)

dCC1

dt
5

2F10

V1

CC1 1
Fr

V1

CCr2CC1ð Þ1 k2e
2E2
RT1 CA1 (22)

dT2

dt
5

F1

V2

T12T2ð Þ1 F20

V2

T202T2ð Þ1 2DH1

qCp

k1e
2E1
RT2 CA2

1
2DH2

qCp

k2e
2E2
RT2 CA2 1

Q2

qCpV2

(23)

dCA2

dt
5

F1

V2

CA12CA2ð Þ1 F20

V2

CA202CA2ð Þ

2k1e
2E1
RT2 CA22k2e

2E2
RT2 CA2 (24)

dCB2

dt
5

F1

V2

CB12CB2ð Þ2 F20

V2

CB2 1 k1e
2E1
RT2 CA2 (25)

dCC2

dt
5

F1

V2

CC12CC2ð Þ2 F20

V2

CC2 1 k2e
2E2
RT2 CA2 (26)

dT3

dt
5

F2

V3

T22T3ð Þ2 Hvap Frm

qCpV3

1
Q3

qCpV3

(27)

dCA3

dt
5

F2

V3

CA22CA3ð Þ2 Fr

V3

CAr2CA3ð Þ (28)

Figure 2. Process flow diagram of the reactor and sep-
arator chemical process.
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dCB3

dt
5

F2

V3

CB22CB3ð Þ2 Fr

V3

CBr2CB3ð Þ (29)

dCC3

dt
5

F2

V3

CC22CC3ð Þ2 Fr

V3

CCr2CC3ð Þ (30)

where the notations are defined in Table 1 and the process
parameter values are given in Table 2.

To model the separator, we assume that the relative vola-
tility of each species remains constant within the operating
temperature range of the flash tank and that the amount of
reacting material in the separator is negligible. The following
algebraic equations model the composition of the overhead
stream of the separator

CAr 5
aACA3

K
;CBr 5

aBCB3

K
;CCr 5

aCCC3

K
(31)

K 5 aACA3

MW A

q
1 aBCB3

MW B

q
1 aCCC3

MW C

q
1 aDxDq

(32)

Frm 5
Fr

MW D
½q2CA3MW A2CB3MW B2CC3MW C

1 CA3 1 CB3 1 CC3ð ÞMW D	 (33)

where xD is the mass fraction of the solvent in the flash tank
liquid holdup and Frm is the recycle molar flow rate.

The process has four manipulated input variables: the heat
supplied/removed for each vessel and the inlet flow rate F20

to the second reactor. The available control energy is
jQij � 3 3 105 kJ=h, i 5 1; 2; 3 and 0 � F20 � 10 m3=h.
The control objective we consider is to drive the system to
the unstable steady-state

xT
s 5 T1 CA1 CB1 CC1 T2 CA2 CB2 CC2 T3 CA3 CB3 CC3½ 	
5 370 3:32 0:17 0:04 435 2:75 0:45 0:11 435 2:88 0:50 0:12½ 	

while proactively accounting for an incipient fault under the
various simulated control actuator faults.

To design the Lyapunov-based controller h(x), we consider
a quadratic Lyapunov function V xð Þ5 xTPx with P 5

diag 20 10310310310 10310310310 103103103

 �� �

and design
the controller h(x) as three PI controllers with proportional
gains Kp1 5 5000;Kp2 5 7000;Kp3 5 7000 and integral time
constants sI1 5 sI2 5 sI3 5 10 based on the deviation of tem-
perature measurements of T1, T2, and T3 from their respec-
tive steady-state temperature values. The feed flow rate into
the second reactor is set to be a constant F20 5 5 m 3=h in
the controller h(x). The auxiliary controller h(x) is used
in the design of a proactive fault-tolerant LMPC of
Eq. 8 with weighting matrices chosen to be Qc 5 P,
R 5 diag 5 3 10212 5 3 10212 5 3 10212 100


 �� �
, prediction

horizon N 5 6, and sampling period D 5 0:005 h 5 18s.
We implement the proactive fault-tolerant LMPC on the

reactor-separator chemical process of Eqs. 19–33. To com-
pare the proactive fault-tolerant controller with the closed-
loop system without proactive fault-tolerant control, we
implement another LMPC that does not account for the fault.
The reactor-separator system is initialized at the stable
steady-state T1 5 T2 5 T3 5 301K, CA1 5 3:58, CA2 5 3:33,
CA3 5 3:50, CB1 5 CB2 5 CB3 5 0, and CC1 5 CC2 5 CC3 5 0.
The simulations were carried out using Java programming
language in a Intel

VR

CoreTM i7, 3.40 GHz computer. The
optimization problems were solved using the open source in-
terior point optimization software Ipopt.29

In terms of fault/failure, they can be classified by its
degree and action time, so we introduce different types of

actuator faults in the system. In case study A, we conduct a
simulation for a fault in Q2, which is a complete fault in the
corresponding actuator. To simulate a realistic gradual actua-
tor fault, we model a fault in Q2 as a logistic function in
case B as well as introduce process noise into the system. In
case C, we simulate process recovery from the faulty system
back to the fault-free system with the proposed proactive
fault-tolerant controller after the faulty actuator is repaired.
The following case studies were completed to simulate these
scenarios and demonstrate the practical stability of the
closed-loop system of Eqs. 19–33 with the proposed proac-
tive fault-tolerant LMPC.

Complete fault on the heat input to the second reactor

We consider a fault in the heat supplied to/removed from
CSTR2 that renders Q2 5 0 for t � 0:0545h. The results of

Table 1. Notation Used for the Process Parameters and

Variables

CAj0 Concentration of A in the feed stream to vessel j, j51; 2
Ci;j Concentration of species i, i5A;B;C in vessel j, j51; 2; 3
Ci;r Concentration of species i, i5A;B;C in the recycle stream
Tj0 Temperature of the feed stream to vessel j, j51; 2
Tj Temperature in vessel j, j51; 2; 3
Tr Temperature in the recycle stream
Fj0 Flow rate of the feed stream to vessel j, j51; 2
Fj Flow rates of the effluent stream from vessel j, j51; 2; 3
Fr Flow rate of the recycle stream
Fp Flow rate of the purge stream
Vj Volumes of vessel j, j51; 2; 3
Ek Activation energy of reaction k, k51; 2
kk Pre-exponential factor of reaction k, k51; 2
DHk Heat of reaction k, k51; 2
Hvap Heat of vaporization
ai Relative volatilities of species i, i5A;B;C;D
MWj Molecular weights of species i, i5A;B;C;D
Cp Heat capacity
R Gas constant

Table 2. Process Parameter Values

T105300, T205300 K
F1055, Fr51:9, Fp50 m3=h
CA1054, CA2053 kmol=m

3

V151:0, V250:5, V351:0 m3

E1553104, E255:53104 kJ/kmol
k1533106, k2533106 1=h
DH15253104, DH2525:33104 kJ/kmol
Hvap 55 kJ/kmol
Cp50:231 kJ=kg-K
R58:314 kJ=kmol-K
q51000 kg=m

3

aA52, aB51, aC51:5, aD53 Unitless
MW A5MW B5MW C550, MW D518 kg/kmol
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two one-hour closed-loop simulations are shown in Figures 6
and 7. Figure 6 shows the closed-loop process evolution
with LMPC but without accounting for the fault and Figure
7 shows the closed-loop process evolution with the proposed
proactive fault-tolerant LMPC. Figure 3 shows a plot of the
manipulated input trajectories for (a) the closed-loop process
without accounting for the fault and (b) the closed-loop pro-
cess with the proposed proactive fault-tolerant LMPC from
t 5 0 h to t 5 0:3 h to better highlight the differences between
the two types of controllers.

From Figure 3, we observe that the proactive fault-tolerant
LMPC feeds less cold reactant by reducing the inlet feed F20

into CSTR2 leading up to the fault compared to the closed-
loop process without proactive fault-tolerant control. Before
the fault, CSTR2 is rich with the reactant A and the tempera-
ture in the reactor is less than the desired set-point. Consid-
ering that the reaction is exothermic and the initial
temperature of inlet feed F20, T20, is colder relative to the
desired temperature of CSTR2, the proactive fault-tolerant
controller takes advantage of the heat generated from the
exothermic reaction to heat the contents of CSTR2. Further-
more, we see that the proactive fault-tolerant controller shuts
off the manipulated input Q2 at the sampling time before the
fault occurs and uses only the feed flow F20 into CSTR2 to

bring the temperature and species concentrations of CSTR2
close to the desired set-points with Q2 5 0. From Figures 6
and 7, the post-fault behavior of these two control strategies
is observed. The closed-loop process without proactive fault-
tolerant control settles on an offsetting steady-state; whereas,
the closed-loop process with the proposed proactive fault-tol-
erant LMPC settles at the desired steady-state. To compare
the closed-loop performance of the two simulations, we use
the total closed-loop performance index defined as

J 5

ðt 5 1h

t 5 0

jx sð Þ2xsjQc
1 ju sð Þ2usjRc

ds (34)

of each simulation. The total performance index with the
proposed proactive fault-tolerant LMPC is 2:35 3 104 which
is an order of magnitude smaller than 1:99 3 105 which is
the total closed-loop process performance index with the
LMPC that does not account for the fault.

Gradual fault on the heat input to the second reactor

In certain cases, an actuator may fail gradually. Based on
the empirical function of the reliability of process compo-
nents, the maximum available output of the faulty actuator
usually decreases exponentially on the basis of its original
maximum available output.30 Thus, in this case, we use a
logistic function to represent the maximum available output
of the faulty actuator for the heat input/removal to CSTR2.
The logistic function has a general formula as follows31

jUmax tð Þj5 a

1 1 exp
2 t2cð Þ

b

� 	 jUmax ;0j (35)

where a, b and c are parameters, jUmax tð Þj is the maximum
available control energy of the jth faulty control actuator,
and jUmax ;0j is the maximum available output of the actuator
under fault-free conditions. Figure 4 shows a plot of the
logistic function of Eq. 35 used to model a gradual fault in
Q2 with parameters: a 5 1, b 5 20:01 h and c 5 0:055 h.
From the plot, we can observe that the maximum available
output value decreases slowly at the beginning, but the

Figure 3. The closed-loop input trajectories.

(a) without proactive fault-tolerant control and (b) with

the proposed proactive fault-tolerant LMPC. The fault

renders Q2 tð Þ5 0 for t � 0:0545 h. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 4. The plot of the logistic function for the normal-
ized maximum output of the faulty actuator.

At t 5 0:1 h, the maximum output of the faulty actuator

becomes very close to 0% of its fault-free output value.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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derivative of this function decreases quickly which is charac-
teristic of a realistic actuator fault. For this particular func-
tion, the maximum available output of the faulty actuator
becomes very close to 0% of its fault-free output at t 5 0:1 h.

Instead of switching the control problem from four control
actuators to the three remaining control actuators at the begin-
ning of the gradual fault, the proactive fault-tolerant LMPC
accounts for the faulty actuator of Q2 whose maximum avail-
able output decreases following the above logistic function. In
this case, the gradual fault begins at t 5 0:0545 h and the pro-
active fault-tolerant LMPC regards t 5 0:1545 h as the time to
reconfigure the control system from four available control
actuators to the three remaining control actuators. This time
has been chosen as 0:1h after the beginning of the gradual
fault because the maximum available output of the faulty ac-
tuator at this time is almost 0% of its fault-free output.

We also consider the effect of bounded process noise on
the process. Process noise is added to each of the 12
states and modeled as bounded Gaussian white noise with 0
mean, unit variance, and bounds given by wp 5 2 0:25½
0:05 0:05 2 0:25 0:05 0:05 2 0:25 0:05 0:05	. The results of
two one-hour closed-loop simulations are shown in Figures 8

and 9. Figure 8 shows the closed-loop process evolution
with LMPC, but without accounting for the fault and Figure
9 shows the closed-loop process evolution with the proposed
proactive fault-tolerant LMPC. Figure 5 shows a plot of the
manipulated input trajectories for (a) the closed-loop process

Figure 5. The closed-loop input trajectories.

(a) without proactive fault-tolerant control and (b) with

the proposed proactive fault-tolerant LMPC. The maxi-

mum available control energy in the faulty actuator of Q2

follows the logistic function of Eq. 35 with parameters:

a 5 1, b 520:01 h and c 5 0:055 h; the gradual fault

starts at t 5 0:0545 h. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 6. The closed-loop process state and manipu-
lated input trajectories (solid lines) and set-
points (dashed lines).

(a) vessel temperatures, (b) species concentrations, (c)

manipulated inputs without proactive fault-tolerant con-

trol applied. The fault renders Q2 tð Þ5 0 for

t � 0:0545 h. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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without accounting for the fault and (b) the closed-loop pro-
cess with the proposed proactive fault-tolerant LMPC from
t 5 0 h to t 5 0:3 h to better highlight the differences between
the two types of controllers. The maximum available control
energy in the faulty actuator of Q2 follows the logistic

function of Eq. 35 with the parameters a 5 1, b 5 20:01 h
and c 5 0:055 h. The gradual fault begins at t 5 0:0545 h.

From Figure 3b, we observe that the proactive fault-toler-
ant controller chooses a similar strategy as in case A.

Figure 7. The closed-loop process state and manipu-
lated input trajectories (solid lines) and set-
points (dashed lines).

(a) vessel temperatures, (b) species concentrations, (c)

manipulated inputs with proactive fault-tolerant control

applied. The fault renders Q2 tð Þ5 0 for t � 0:0545 h.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 8. The closed-loop process state and manipu-
lated input trajectories (solid lines) and set-
points (dashed lines).

(a) vessel temperatures, (b) species concentrations, (c)

manipulated inputs without proactive fault-tolerant con-

trol applied. The maximum available control energy in

the faulty actuator of Q2 follows the logistic function;

the gradual fault starts at t 5 0:0545 h. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Specifically, by accounting for the gradual fault that limits
the available maximum output of Q2, the proactive fault-tol-
erant controller feeds less reactant material A into CSTR2
leading up to the fault and maintains the temperature T2 at

the desired steady-state as the maximum output of Q2

decreases. The closed-loop process without proactive fault-
tolerant control (Figure 3a) feeds more feedstock into

Figure 9. The closed-loop process state and manipu-
lated input trajectories (solid lines) and set-
points (dashed lines).

(a) vessel temperatures, (b) species concentrations, (c)

manipulated inputs with proactive fault-tolerant control

applied. The maximum available control energy in the

faulty actuator of Q2 follows the logistic function; the

gradual fault starts at t 5 0:0545 h. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 10. The closed-loop process state and manipu-
lated input trajectories (solid lines) and set-
points (dashed lines).

(a) vessel temperatures, (b) species concentrations and (c)

manipulated inputs with the proposed proactive fault-tol-

erant LMPC. The maximum available control energy in

the faulty actuator of Q2 follows the logistic function with

the given parameters. At t 5 0:625h, the proactive fault-

tolerant controller adds the repaired Q2 actuator back to

the closed-loop system. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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CSTR2 while demanding more heat removed to decrease the
temperature T2 to the desired steady-state after the fault.
However, the fault has rendered the Q2 actuator inactive
and, therefore, cannot remove heat from CSTR2. The effect
of feeding more material without removing heat causes the
reactions to runaway because the reactions are highly
exothermic. The post-fault behavior of these two control
strategies is observed in Figures 8 and 9. The process under
the proactive fault-tolerant controller brings the process
states to the desired steady-state. The process without the
proposed proactive LMPC settles on an offsetting steady-
state. The total closed-loop performance index with the pro-
posed proactive fault-tolerant LMPC is 2:55 3 104, which is
an order of magnitude smaller than the closed-loop process
with an LMPC that does not account for the fault which has
a total closed-loop performance index of 3:76 3 105.

Process recovery from three input control system to
fault-free four input control system

In this case, we demonstrate that with the proposed proac-
tive LMPC we can successfully recover back to the full,
fault-free system after an actuator fault has been rectified or
replaced. Figure 10 shows the closed-loop evolution of the
process with the proactive fault tolerant controller with the
same gradual fault in the Q2 actuator as in case study B. We
consider t 5 0:625h is the time the faulty actuator has been
fixed and added back. From Figure 10, the controller is able
to achieve practical stability both after the fault and after the
faulty actuator has been fixed and added back to the system.

Conclusions

In this work, we proposed a proactive fault-tolerant Lya-
punov-based MPC that can account for an incipient fault and
work for complete fault rejection. We proved practical sta-
bility of a closed-loop nonlinear system with the proposed
proactive fault-tolerant LMPC. The proposed controller was
demonstrated through a chemical process consisting of two
CSTRs in series followed by a flash separator. The simulated
process demonstrated that the proactive fault-tolerant LMPC
was able to achieve practical stability of the closed-loop
system.
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