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Abstract This paper attempts to propose a new method

based on capabilities of artificial neural networks, in

function approximation, to attain the solution of optimal

control problems. To do so, we try to approximate the

solution of Hamiltonian conditions based on the Pontryagin

minimum principle (PMP). For this purpose, we introduce

an error function that contains all PMP conditions. In the

proposed error function, we used trial solutions for the

trajectory function, control function and the Lagrange

multipliers. These trial solutions are constructed by using

neurons. Then, we minimize the error function that con-

tains just the weights of the trial solutions. Substituting the

optimal values of the weights in the trial solutions, we

obtain the optimal trajectory function, optimal control

function and the optimal Lagrange multipliers.

Keywords Pontryagin minimum principle �
Optimal control problem � Artificial neural networks

1 Introduction

A very important, extensive and applicable mathematical

model is the optimal control problem. There are a wide

variety of practical problems arising in science and engi-

neering that have a dynamical system and the dynamic of

the system must be controlled to attain an objective. In

recent years, several researchers attempted to offer and

extend new methods for solving optimal control problem.

For example, Krabs et al. [1] proposed a mathematical

model for the control of the growth of tumor cells which is

formulated as a problem of optimal control theory. Mod-

ares et al. [2] presented a hybrid algorithm by integrating

an improved particle swarm optimization with successive

quadratic programming (SQP), for solving nonlinear opti-

mal control problems.

The solutions of optimal control problems can be calcu-

lated either by using Pontryagin’s minimum principle

(PMP), which provides a necessary condition for optimality,

or by solving the Hamilton–Jacobi–Bellman (HJB) partial

differential equation (PDE), which is a sufficient condition

(see e.g. [3, 4]). Solving the HJB–PDE is a very tedious task.

Several approximation methods are proposed for solving it.

Hilscher [5] considered Hamilton–Jacobi theory over time

scales and its applications to linear-quadratic problems.

Based on the variational iteration method, Berkani et al. [6]

proposed a method for solving optimal control problems.

Garg et al. [7] presented a unified framework for the

numerical solution of optimal control problems using col-

location at Legendre–Gauss, Legendre–Gauss–Radau, and

Legendre–Gauss–Lobatto points. An adaptive multilevel

generalized SQP method presented in [8] to solve PDAE-

constrained (partial differential algebraic equations) opti-

mization problems. The notion of KT-invexity from math-

ematical programming was extended to the classical optimal

control problem by authors of [9]. Optimal control problem

subject to mixed control-state constraints was investigated

by Gerdts [10]. He stated the necessary conditions in terms of

a local minimum principle and use of the Fischer–Burmeister
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function. Buldaev [11] used perturbation methods in optimal

control problems. Numerical methods based on extended

one-step methods were investigated for solving optimal

control problems in [12]. Variational inequalities were used

to govern the existence results for optimal control problems

in [13]. Chryssoverghi et al. [14] considered an optimal

control problem described by nonlinear ordinary differential

equations (ODEs) with control and state constraints,

including point-wise state constraints. Because their prob-

lem may have no classical solutions, they formulated a

relaxed form of problem and used discretization method.

England et al. [15], in an interesting work, expressed optimal

control problems as differential algebraic equations. Local

stability of the solution to optimal control problems was

analyzed by Rodriguez [16]. An approximate-analytical

solution for the HJB equation proposed via homotopy per-

turbation method in [17]. Cheng et al. in several works [18–

20] proposed a neural network solution for different types of

optimal control problems. They proposed (in [18]) neural

network solution for suboptimal control of non-holonomic

chained form systems. In [19], they introduced a neural

network solution for finite-horizon H-infinity constrained

optimal control of nonlinear systems. Finally in [20], they

proposed fixed-final time-constrained optimal control laws

using neural networks to solve HJB equations for general

affine in the constrained nonlinear systems. Vrabie and

Lewis [21] presented a neural network approach to contin-

uous-time direct adaptive optimal control for partially

unknown nonlinear systems.

In the last decade, artificial neural networks and other

elements of soft computing and artificial intelligence played

an important role in solving hard to solve problems arising

in science and engineering phenomenons. Applying the

mentioned methods in many contests was successful, and

the results were comparable with the other results obtained

by mathematical algorithms. Lagaris et al. [22] used artifi-

cial neural networks to solve ODEs and PDEs for both

boundary value problems and initial value problems. Vrabie

et al. [21] proposed a method for solving continuous-time

direct adaptive optimal control for partially unknown non-

linear systems, based on a reinforcement learning scheme.

In Sect. 2, we introduce the optimal control problem and

present some basic concepts of neural network models.

Section 3 contains the main idea based on neural network

models. In Sect. 4, we apply the new method for solving

some numerical problems, and finally Sect. 5 contains

concluding remarks.

2 Preliminaries

In this paper, we consider the following type of optimal

control problem:

min
Rtf

t0

f0ðxðtÞ; uðtÞ; tÞ dt

s:t
_x ¼ gðxðtÞ; uðtÞ; tÞ
xðt0Þ ¼ x0;

ð1Þ

where xðtÞ 2 <n is the state variable, uðtÞ 2 <m is the

control variable and t 2 <: It is assumed that the integrand

f0 has continuous first and second partial derivatives with

respect to all its arguments. Also we assume that t0 and tf
are fixed and g is Lipschitz continuous on a set X � <n:

According to the problem (1), we can construct the

well-known Hamiltonian as: H(x(t), u(t), p(t), t) = f0(x(t),

u(t), t) ? p(t)�g(x(t), u(t), t) where p 2 <m is the costate

vector. Suppose that we denote the optimal state, co-state

and control functions by x*(t), p*(t) and u*(t) respectively.

Then, a necessary condition for u*(t) to minimize the

objective functional in (1) is that:

Hðx�ðtÞ; u�ðtÞ; p�ðtÞ; tÞ�Hðx�ðtÞ; uðtÞ; p�ðtÞ; tÞ ð2Þ

for all t 2 ½t0; tf � and for all admissible controls. Equation

(2) that indicates that an optimal control must minimize the

Hamiltonian is called the PMP (see [3]). Using PMP

provides a necessary condition for optimality. This PMP

shows that if x(t), p(t) and u(t) are the optimal values of the

state, costate and control respectively, they must satisfy the

following conditions:

oHðx;u;t;pÞ
ox ¼ � _pðtÞ

oHðx;u;t;pÞ
op ¼ _xðtÞ

oHðx;u;t;pÞ
ouðtÞ ¼ 0

8
><

>:
ð3Þ

By replacing the known functions f0 and g into the Ham-

iltonian, Eq. (3) gives a system of ODEs, which can be

solved via numerical methods or other existing methods. In

some cases, Eq. (3) introduces an straightforward ODE

system that can be solved easily. But in most cases (spe-

cially in practical problems), the system cannot be easily

solved, and an approximated scheme must be applied. In

the next section, we try to apply neural network’s ability in

function approximation to solve (3).

A basic neuron based on a perceptron can be observed in

Fig. 1. It is proved that we can use multi-layer perceptrons

to approximate any nonlinear function with arbitrary

accuracy(see [23]).

Here W is the weight vector of input layer, b is a vector

containing bias weights, and V is the output layer weights.

W z v

b

X + Sigmoid Out

Fig. 1 Basic perceptron
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It can be observed that we can calculate the output from the

following formulation:

out ¼
Pk

i¼1

virðziÞ

zi ¼
Pk

i¼1

wixþ bi

8
>><

>>:
ð4Þ

where k is the number of sigmoid units. The activation

function here is the sigmoid function in the following

formula:

rðxÞ ¼ 1

1þ e�x
ð5Þ

Based on Kolmogorov theorem, it is proved that we can

implement any continuous function with a multi-layer

perceptron (for more details, see [23]). According to this

theorem, we use the ability of neural networks in function

approximation, to approximate the state, co-state and

control function for optimal control problem (1) which

will be discussed in detail in the next section.

3 Main idea

In this section, we try to propose an approximation scheme

for solving the equations arising in PMP (i.e., Eq. 3). We

consider three neural networks for each function: state (its

neural network is nx), costate (its neural network is np) and

the control (its neural network is nu) function separately,

where each neural network model contains its special

adjustable parameters, as it can be observed in Fig. 1. Note

that the structures of the neural network models must be

constructed such that satisfy the initial or boundary con-

ditions. The proposed neural network models can be pro-

posed in the following forms:

nx ¼
PI

i¼1

vi
xrðzi

xÞ; zi
x ¼ wi

xt þ bi
x

np ¼
PI

i¼1

vi
prðzi

pÞ; zi
p ¼ wi

pt þ bi
p

nu ¼
PI

i¼1

vi
urðzi

uÞ; zi
u ¼ wi

ut þ bi
u

8
>>>>>>><

>>>>>>>:

ð6Þ

for i ¼ 1; 2; . . .; I where I is the number of neurons that can

be different for each neural network.

Now we are ready to use the neural networks (6) and

define the main trail solutions. The trial solutions (for state,

costate and control function) contain the neural networks,

satisfy the initial or boundary conditions, and thus, they can

be defined in the following structures:

xT ¼ x0 þ ðt � t0Þnx

pT ¼ np

uT ¼ nu

8
<

:
ð7Þ

It is easy to check that xT satisfies the initial condition

(xT(t0) = x0). Note that we may have p(.) = 0 for free end-

points. For example, if x(t0) is free, we must have p(t0) = 0,

and thus, we can define pT in (7) as: pT = (t - t0)np. For

other initial (or boundary) conditions, we can construct

appropriate trial functions.

By replacing the trial solutions into the Hamiltonian

function, we can define a trial hamiltonian HT which is

conventional Hamiltonian function H where we replaced

the functions x, p and u by their corresponding trial format

(xT, pT and uT respectively) as HT(xT(t), uT(tf), pT(t), t)

= f0(xT(t), uT(t), t) ? pT(t)�g(xT(t), uT(t), t). Thus, the trial

Hamiltonian function contains the weights of neural net-

works. Since the trial solutions (7) must satisfy conditions

(3), we replace them into the Eq. (3):

oHT

oxT
þ _pT ¼ 0

oHT

opT
� _xT ¼ 0

oHT

ouT
¼ 0

8
><

>:
ð8Þ

To solve the system (8), we define three error functions

corresponding to each equation:

E1ð/; tÞ ¼ oHT

oxT
þ _pT

h i2

E2ð/; tÞ ¼ oHT

opT
� _xT

h i2

E3ð/; tÞ ¼ oHT

ouT

h i2

8
>>>><

>>>>:

ð9Þ

and finally a total error function E(/, t) = E1(/, t) ?

E2(/, t) ? E3(/, t), where / is a vector containing all

weights of three neural networks (6). Indeed, / contains all

weights wx, wp, wu, bx, bp, bu, vx, vp and vu. Now instead of

solving Eq. (8), we discritize the interval [t0,tf] (by m points)

and solve the following unconstrained optimization problem:

min
/

Pm

k¼1

Eðtk;/Þ ð10Þ

To solve (10), which is an unconstrained optimization

problem, we can use any optimization algorithms such as

steepest descent, Newton, or Quasi-Newton methods as

well as the heuristic algorithms such as GA (genetic

algorithm) or particle swarm optimization, etc.

After terminating the optimization step, we can replace

the optimal values of the weights / (containing the weights

of input and output layer and the bias vector) into the

Eq. (7) and conclude the trial structures of state, co-state

and control functions.

The main advantages of this method are that the

implementation of the algorithm is not very complicated,

we can use more hidden layer or more training points over

the interval [t0,tf] to obtain more accurate approximations.

Finally, the solution of state, co-state and control functions

is introduced as functions of time (t) thus we can calculate
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the solution at every arbitrary point over the interval [t0,tf].

Also the proposed control and state functions are differ-

entiable which can be useful in applications.

4 Numerical simulations

In this section, we try to implement the proposed algorithm

to solve four optimal control problems. We used for all

problems, five parameters for each input, output and bias

weights. The intervals are discretized to ten equivalent

parts. For the optimization step, we used the MATLAB 7

optimization toolbox with Quasi-Newton BFGS algorithm.

The user can use other optimization algorithms such as

steepest descent, Newton-based methods or other heuristic

algorithms such as GA or particle swarm optimization, etc.

Example 4.1 Consider the following optimization problem:

min
R1

0

½x2ðtÞ þ u2ðtÞ� dt

s:t
_x ¼ uðtÞ

xð0Þ ¼ 1; xð1Þ is free

ð11Þ

First we must construct the Hamiltonian function:

Hðx; u; p; tÞ ¼ x2ðtÞ þ u2ðtÞ þ puðtÞ ð12Þ

Following Eq. 3, we must have:

2xðtÞ ¼ � _p
_x ¼ uðtÞ
2uðtÞ þ p ¼ 0

8
<

:
ð13Þ

because x(1) is free, we have p(1) = 0. Considering this

condition and the initial condition x(0) = 1, we can choose

the trial solutions as:

xT ¼ 1þ tnx

pT ¼ ðt � 1Þnp

uT ¼ nu

8
<

:
ð14Þ

For this example, we used 15 weights for each neural

network (five weights for each weight of input layer, output

layer and the bios vector). We can see the approximate and

exact solutions for u(t) and x(t) in Figs. 2 and 3, respec-

tively. Figures 4 and 5 show the solution accuracy.

Example 4.2 Consider the following optimization

problem:

min
R1

0

½ð2� xðtÞÞ2 þ u2ðtÞ� dt

s.t

_x ¼ �0:25
ffiffiffiffiffiffiffiffi
xðtÞ

p
þ uðtÞ

xð0Þ ¼ 0; xð1Þ ¼ 2

ð15Þ

First we must construct the Hamiltonian function:

Hðx; u; p; tÞ ¼ ½ð2� xðtÞÞ2 þ u2ðtÞ� þ pð�0:25
ffiffiffiffiffiffiffiffi
xðtÞ

p

þ uðtÞÞ
ð16Þ

Following Eq. 2, we must have:

�2ð2� xðtÞÞ þ �0:25

2
ffiffiffiffiffiffi
xðtÞ
p p ¼ � _p

_x ¼ �0:25
ffiffiffiffiffiffiffiffi
xðtÞ

p
þ uðtÞ

2uðtÞ þ p ¼ 0

8
>>><

>>>:

ð17Þ

Considering the initial conditions x(0) = 0 and x(1) = 2,

we can choose the trial solutions as:

xT ¼ 2t þ tðt � 1Þnx

pT ¼ np

uT ¼ nu

8
<

:
ð18Þ

0 0.2 0.4 0.6 0.8 1
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−0.5

−0.4

−0.3

−0.2

−0.1

0

t

u(
t)

Exact (o) and approximated (+) solution for function u(t)

Fig. 2 Exact and approximated control function (Example 4.1)
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Exact (o) and approximated (+) solution for function x(t)

Fig. 3 Exact and approximated state function (Example 4.1)
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For this example, we used 15 weights for each neural net-

work (five weights for each weight of input layer, output

layer and the bios vector). We can see the approximate and

exact solutions in Figs. 6 and 7. Figures 8 and 9 show the

solution accuracy. This example is solved in [6] by a varia-

tional iteration method. Our results are comparable with the

results in [6]; however, neural network method gives the

state and control as functions of time which are differentiable

and the method implementation is more simple.

Example 4.3 Consider the following optimization problem:

min J ¼ �xð2Þ
s.t

_x ¼ 5
2
�xþ ux� u2ð Þ

xð0Þ ¼ 1

ð19Þ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
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2.5

3

3.5

4

4.5
x 10

−4

Error u(t)

Fig. 4 Error for estimating control function (Example 4.1)
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Fig. 5 Error for estimating state function (Example 4.1)
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Fig. 6 Exact and approximated control function (Example 4.2)
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Fig. 7 Exact and approximated state function (Example 4.2)
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Fig. 8 Error for estimating control function (Example 4.2)
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The exact state and control functions are as follows:

xðtÞ ¼ 4

1þ3 exp 5t
2ð Þ

uðtÞ ¼ xðtÞ
2

(

ð20Þ

Figures 10 and 11 show the state function approximation

and corresponding error. Figures 12 and 13 show the

control function approximation and its corresponding error.

Example 4.4 Consider the following nonlinear optimal

control problem [24, 25]:

min
R1

0

uðtÞ2 dt

s.t

_x ¼ 0:5x2ðtÞ sinðxðtÞÞ þ uðtÞ
xð0Þ ¼ 0; xð1Þ ¼ 0:5;

ð21Þ
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0
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Fig. 9 Error for estimating state function (Example 4.2)
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Exact (o) and approximated (+) solution for function x(t)

Fig. 10 Exact and approximated state function for Example 4.3
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Fig. 11 Error for estimating state function (Example 4.3)
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Fig. 12 Exact and approximated control function (Example 4.3)
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Fig. 13 Error for estimating control function (Example 4.3)
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This problem is solved in [25] by a variational method.

For this example, we have H(x(t), u(t), p(t), t) =

u(t)2 ? p(0.5x2(t)sin(x(t)) ? u(t)). Thus conditions (3)

can be driven as the following system:

_xðtÞ ¼ 0:5x2ðtÞ sinðxðtÞÞ � 0:5pðtÞ
_pðtÞ ¼ �pðtÞxðtÞ sinðxðtÞÞ � 0:5pðtÞx2ðtÞ cosðxðtÞÞ
2uðtÞ þ pðtÞ ¼ 0;

8
<

:

ð22Þ

with the initial and final conditions x(0) = 0 and x(1) = 0.5.

This system is solved by numerical methods (Euler method),

and the results are displayed and compared with the results

obtained by neural networks in Figs. 14 and 15. The optimal

value of the objective functional in neural network method is

J* = 0.2353 and x(tf) is exactly equal to 0.5. Comparing our

result with the obtained results in [25] shows the accuracy of

the method based on neural networks.

5 Concluding remarks

This paper presented an approximated solution of optimal

control problems, based on the neural network approach.

One of the advantages of the proposed method is that, for

attaining more accurate solutions, we can use more hidden

layers, more training points and also we are allowed to use

heuristic algorithms in optimization step such as GA and

PSO or other existing unconstrained optimization algo-

rithms. The proposed solution is a differentiable function

(for state, co-state and control functions). Work is in pro-

gress to apply the method to approximate the solution of

HJB equation and also for problems arising in calculus of

variations.
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