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Abstract

Although we usually would like to work with exact systems, most of the real world systems are nonlinear with uncertain
parameters. In this paper, we propose AVK (A.V. Kamyad) approach to solve nonlinear problems with uncertain param-
eters (NPUP). This approach substitutes the original nonlinear system with an equivalent nonlinear programming (NLP)
problem. Using this approach, we found an optimal solution of NLP problem and a new approximate solution for the
original NPUP in Lp space.
� 2006 Published by Elsevier Inc.
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1. Introduction

Uncertainty parameters usually appear in systems with undefined or unknown parameters. The solution of
these systems often is difficult and achieving the control of the system is boring. In recent years, many
approaches were proposed for analysis of uncertainty such as robust control feedback, Gain Loci character-
istic, l synthesis, LQR/LTR, H2 and H1 [2,5], adaptive control, Gain scheduling, Genetic Algorithm, neural
network, fuzzy control might be used for control of uncertain parameter systems [6,7]. Many of them work
with any certain class of nonlinear system or linear systems.

Many authors try to consider certain parameters or use stochastic or probability structure with known
mean value and variance of probability distribution (Bayesian Models) [1]. Also we may assume parameters
unknown but bounded (Fisher Models) [2]. Uncertainties approaches are shown in two different categories;
structured uncertainties (Model uncertainty) and unstructured uncertainties (Data uncertainty) [3]. Uncer-
tainty appears in systems with a different variety, for example there are additive ðG ¼ �Gþ DAÞ or multiplica-
tive uncertainties ðG ¼ ð1þ DMÞ�GÞ, where G is real model of system, �G is nominal model, DA and DM are
additive and multiplicative uncertainty, respectively [4].
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For the first time, A.V. Kamyad (AVK) et al. proposed an approach that may find optimal control for
NPUP [8,9] to solve an equivalent problem by a linear programming. In this paper we extend former method
and propose new approach to solve NPUP by NLP. The algorithm introduces an approximate solution of the
NPUP based on optimization [10–17]. In this approach we define an equivalent minimization problem for the
NPUP and substitute this system with an equivalent NLP problem by discretizing. In fact, this is the approx-
imate solution of the original problem which is the best solution for the original NPUP in Lp space. Moreover
the error of this approximated solution is controllable. Finally our algorithm will be confirmed by simulation
of different NPUP.

The following notation is used in this paper. x 2 Rn denotes an element of the n-dimensional Euclidian
space with arbitrary norm function kXkL1

where is defined as follows:
kXkL1
¼ kðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞÞkL1

¼ jx1ðtÞj þ jx2ðtÞj þ � � � þ jxnðtÞj:
2. Definitions and AVK method

2.1. Nonlinear problems with uncertain parameter (NPUP)

Definition 1. We focus on following NPUP:
_x ¼ f ðx; u;DÞ
s:t: xðaÞ ¼ xa; xðbÞ ¼ xb;

ð1Þ
where f is a continuous nonlinear time varying function from X � U � ½a; b� to Rn, so that xðtÞ 2 X � Rn is
state function, uðtÞ 2 U � Rm is control function and t 2 ½a; b� � R is independent variable so called, time.
X and U are compact subsets and must be chosen as the system reaches from initial state xðaÞ to final state
xðbÞ. We suppose the nonlinear system (1) is stable in ½a; b� interval. Also D is system uncertainty and it is gen-
erally unknown but bounded i.e. a1 6 D 6 a2 and a1; a2 P 0. The pair x�ðtÞ and u�ðtÞ are the solution of prob-
lem (1) if they track the desired curve xdðtÞ. For full tracking, the initial state must be as followed: xdð0Þ ¼ xðaÞ
and xa, xb are initial and final state in Rn respectively, that may be fixed or free.

Definition 2. First, consider nonlinear system (1), we define following functional that is called the total error
functional. Let
E1ðxðtÞ; uðtÞ;DÞ ¼
Z b

a
k _x� f ðx; u;DÞkdt; ð2Þ
where E1 : X � U � ½a; b� ! R is a continuous functional.

Definition 3. The solution of uncertainty problem can track the desired curve xdðtÞ, if we consider a multi
objective functional as
E2ðx; u;DÞ ¼
Z b

a
ðkxðtÞ � xdðtÞk þ k _x� f ðx; u;DÞkÞdt: ð3Þ
Definition 4. If D has a known distributed function similar to gðtÞ, we may define new functional:
E3ðx; u;DÞ ¼
Z b

a
ðkxðtÞ � xdðtÞk þ gðtÞk _x� f ðx; u;DÞkÞdt: ð4Þ
Now, the following key theorem is demonstrated.

Theorem 1. If h is a nonlinear continuous function on X � U � ½a; b� and non-negative ðh P 0Þ, then the

necessary and sufficient condition for
R b

a hdx ¼ 0 is h 	 0 on ½a; b�.



K.P. Badakhshan et al. / Applied Mathematics and Computation 189 (2007) 27–34 29
Proof. Let assume
R b

a h dx ¼ 0 but h 6¼ 0 and by assumption at a point x in ½a; b�, hðxÞ > 0, since for continuity
of hðxÞ it is positive in some neighborhood of x i.e. hðxÞ > 0 for all x 2 ðx1 � e; x1 þ eÞ that e is a positive num-
ber. Therefore

R b
a hdx P

R x1þe
x1�e hdx > 0 i.e.

R b
a h dx > 0, a contradiction to our assumption. Thus h must be zero

on ½a; b�. On the other hand if h 	 0 on X � U � ½a; b� then obviously
R b

a hdx ¼ 0. h

Theorem 2. Necessary and sufficient condition for a nonlinear function to be concluded a NPUP (1), with initial

condition xðaÞ and final state xðbÞ is to satisfy the following relation in problem (2):
E1ðx; u;DÞ ¼ 0:
Proof. It is sufficient to define h in Theorem 1 as follows:
hðtÞ ¼ k _x� f ðx; u;DÞkL1
: ð5Þ
Since k � kL1
is a continuous function and non-negative and also f ðx; u;DÞ is continuous function, then hðtÞ is

continuous with respect to variables x; u;D; _x and since x; u;D; _x are continuous functions on ½a; b�, then total
function _x� f ðx; u;DÞ is continuous in interval ½a; b�. Therefore, using Theorem 1

R b
a hðtÞdt ¼ 0 is equivalent to

hðtÞ 	 0 for all t 2 ½a; b� i.e.
_x ¼ f ðx; u;DÞ 8t 2 ½a; b�: ð6Þ

Therefore, Theorem 2 is proved. h

Note: Without loss of generality, we may assume a ¼ 0 and b ¼ 1 thus interval ða; bÞ is converted to ð0; 1Þ.
Note: We can assume hðtÞ is a non-negative piecewise continuous functional in ½0; 1� instead of non-negative

continuous condition in ½0; 1� and for h ¼ 0 we may assume hðtÞ ¼ 0, almost everywhere in ½0; 1�.

2.2. AVK method

In AVK method, the following problem is defined in calculus of variations:
Minimize
x;u;D

E3ðx; u;DÞ ¼
R 1

0
ðjxðtÞ � xdðtÞj þ gðtÞj _x� f ðx; u;DÞjÞdt

s:t: xð0Þ ¼ xa; xð1Þ ¼ xb;
ð7Þ
where ðx; u; tÞ 2 X � U � ½0; 1�. For all uncertain values, a1 6 D 6 a2, gðtÞ is a distribution function. We as-
sume the optimal solution of problem (7) is x�ðtÞ; u�ðtÞ, the state and the control functions, respectively.
And according to Theorems 1 and 2:
E3ðx�; u�;DÞ ¼ 0; ð8Þ

i.e.
_x� ¼ f ðx�; u�;DÞ;
x�ðtÞ ffi xdðtÞ; t 2 ½0; 1�;
x�ð0Þ ¼ xdð0Þ ¼ xa; x�ð1Þ ¼ xdð1Þ ¼ xb:

ð9Þ
Then in general, for solving NPUP (1) we can solve the minimization problem (7) by Theorems 1 and 2. Thus
the optimal solution of problem (1) is x�ðtÞ; u�ðtÞ from optimization problem (7).

2.3. Using AVK method to optimize NPUP

2.3.1. Non-consistency

We define non-consistency problem as an example. Let consider the following system of equations:
x1 þ x2 ¼ 1;

x1 þ x2 ¼ 2;

x1 þ x2 ¼ 3:

8><
>: ð10Þ
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This system is called non-consistent. For solving the system, total error must be minimized. We define total
error as
Etotal ¼ jx1 þ x2 � 1j þ jx1 þ x2 � 2j þ jx1 þ x2 � 3j:

And we solve the following NLP problem:
Minimize Etotal ¼ jx1 þ x2 � 1j þ jx1 þ x2 � 2j þ jx1 þ x2 � 3j; ð11Þ

where x1; x2 are free and real numbers. If x1; x2 are the optimal solution of (11) we may say that x�1; x

�
2 are the

best suggested solution of the system (10).

2.3.2. Optimization of NPUP

We have a1 6 D 6 a2 in equivalent problem (7) so that D takes all values between a1; a2. Then divide the
interval ½a1; a2� is divided by n equal part. Let ak ¼ k a2�a1

n

Dk ¼ a1 þ ak;
where k ¼ 0; 1; . . . ; n, D0 ¼ a1 and Dn ¼ a2. We define non-consistent differential equation system similar to the
equation system (10):
_x ¼ f ðx; u;D0Þ ¼ f ðx; u; a1Þ;
_x ¼ f ðx; u;D1Þ;
..
.

_x ¼ f ðx; u;DnÞ ¼ f ðx; u; a2Þ:

8>>>><
>>>>:

ð12Þ
We are looking for the best solution x�ðtÞ; u�ðtÞ for the non-consistent differential equation system (12) where
all discrete values of D are included. The best solution for the optimization problem (7) is minimizing the total
error of above system, i.e. total error in L1 space is minimized as follows:
Minimize
x;u

Z 1

0

jxðtÞ � xdðtÞj þ gðtÞ j _x� f ðx; u;D0Þj þ � � � þ j _x� f ðx; u;DnÞjð Þf gdt

¼
Z 1

0

jxðtÞ � xdðtÞj þ gðtÞ
Xn

k¼0

j _x� f ðx; u;DkÞj
 !

dt; ð13Þ

xdð0Þ ¼ xa; xdð1Þ ¼ xb:
Now, we will solve problem (13) approximately.

2.4. Discretization

We partition the interval t 2 ½0; 1� to m equal subintervals (cells), where m is arbitrary fixed positive integer,
then problem (13) yields to
Minimize
x;u

Xm

i¼1

Z i=m

ði�1Þ=m
jxðtÞ � xdðtÞj þ gðtÞ

Xn

k¼0

j _x� f ðx; u;DkÞj
 !

dt:
For summarize, the initial value xdð0Þ ¼ xa and final value xdð1Þ ¼ xb are neglected. Let dt ¼ 1
m, for the first

derivative we have
_xðtÞ ffi xðt þ dtÞ � xðtÞ
dt

:

Suppose dt! 0, thus the approximate value achieves to the best value for derivation at the time t. Hence dt or
sampling time is very important, and must be chosen small, so the number of partitions is great. This is a trade
off between sampling time and speed of problem solving. Also, we use L1 norm as follows:
Minimize
x;u

Xm

i¼1

Z i=m

ði�1Þ=m
jxðtÞ � xdðtÞj þ gðtÞ

Xn

k¼0

m x t þ 1

m

� �
� xðtÞ

� �
� f ðx; u;DkÞ

����
����

 !
dt:
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Remark. As we know, an approximate value of integral
R b

a KðxÞdx is ðb� aÞKðcÞ, where c is any point such as
a 6 c 6 b.

So, applying above remark, and assume c is an ending point in any subinterval, minimization problem (13) is
formed as
Minimize
x;u

Xm

i¼1

1

m
x

i
m

� �
� xd

i
m

� �����
����þ g

i
m

� �Xn

k¼0

m x
iþ 1

m

� �
� x

i
m

� �� �
� f x

i
m

� �
; u

i
m

� �
;Dk

� �����
����

 !

¼
Xm

i¼1

Xn

k¼0

1

m
x

i
m

� �
� xd

i
m

� �����
����þ g

i
m

� �
m x

iþ 1

m

� �
� x

i
m

� �� �
� f x

i
m

� �
; u

i
m

� �
;Dk

� �����
����

� �
: ð14Þ
So define the unknown parameters as
ti ¼ i
m ;

xi ¼ x i
m

� �
;

xdi ¼ xd
i
m

� �
:

i ¼ 1; 2; . . . ;m;
Thus t0 ¼ 0, tm ¼ 1, x0 ¼ xd0
¼ xa, xm ¼ xdm ¼ xb, and xiþ1 ¼ xð i

mþ 1Þ. Also assume
gi ¼ g i
m

� �
;

ui ¼ u i
m

� �
:

i ¼ 1; 2; . . . ;m; ð15Þ
Thus, we simplify obtained discretized problem (14) in the form
Minimize
xi ;ui

Pm
i¼1

Pn
k¼0

1
m jxi � xdi j þ gijm½xiþ1 � xi� � f ðxi; ui;DkÞj½ �

s:t: x0 ¼ xa; xm ¼ xb:

ð16Þ
As a whole, problem (16) is a NLP problem and we may obtain its solution by many packages such as Lingo,
Matlab, Gino, etc. Finally, by obtaining the solution of problem (16), we recognize the value of unknown
admissible pair ðxi; uiÞ state and control function at n� l points. We can construct the optimal solution for
NPUP (1) by two piecewise functions ðx�i ; u�i Þ. Theorem 2 will shows existence of the optimal solution for
the NPUP (1).

3. Simulation

In this section, we use our algorithm for some NPUP

Example 1. Assume second order €xþ aðtÞ _x cos 3x ¼ u where aðtÞ is unknown but bounded 1 6 aðtÞ 6 2 and
desired trajectory is xdðtÞ ¼ sinð2ptÞ [18], controller is bounded uðtÞ 2 ½�1; :8�.

Solution. For this system we choose partitioning [0, l] to 10 equal subintervals. So t0 ¼ 0; t1 ¼ :1; . . . ; t10 ¼ 1.
The formulation of corresponding NLP problem is as the following:
Minimize Jð�; �Þ ¼
R 1

0
j sinð2ptÞ � xðtÞj þ j€xþ aðtÞ _x cos 3x� ujð Þdt

s:t: xð0Þ ¼ 0; xð1Þ ¼ 1 and uðtÞ 2 ½�1; :8�:

The trajectories of approximate state function (bold line) with desired function (dotted line) are shown in
Fig. 1 and control function is schemed in Fig. 2.

And with unbounded controller we have better trajectory tracking, which is shown in Figs. 3 and 4.

Example 2. Assume Example 1 so that D has normal probability structure i.e. D � Nðl; rÞ. Present a piecewise
continuous controller.



Fig. 1. Approximate solution of the state function (bold line) and desired function (dotted line).

Fig. 2. The control function.

Fig. 3. Approximate solution of the state function (bold line) and desired function (dotted line).
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Fig. 4. The control function.

Fig. 6. Trajectory error.

Fig. 5. Fifty times MC simulation for approximate state (bold line) and desired function (dotted line).
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Solution. We may write gðtÞ in minimization problem (7) as gðtÞ ¼ e�
t�l
rð Þ2 , where l ¼ 1:5 and r ¼ 1. Then the

trajectories of approximate state function (bold line) and desired function (dotted line) with 50 times Monte
Carlo (MC) simulation are presented in Fig. 5 and its error in Fig. 6.
4. Conclusion

Operating uncertainty in nonlinear systems and discretizing an NPUP to a NLP to obtain an approximate
solution of the original problem is the main goal of this paper. In this article, we analyze uncertainty and non-
linearity in a general form. Our approach introduces an approximate solution for the NPUP based on opti-
mization. Then the problem is transferred to a new problem in form of variations calculus. By discretizing the
new problem and solving it by using NLP packages, we obtained the best approximate solution of the original
NPUP. Simulations confirmed the efficacy of our approach in tracking desired trajectory and solving NPUP in
comparison with the result obtained in [8]. Moreover, comparing with [18], the AVK algorithm yields a more
practical piecewise continuous controller.
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