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IDENTIFICATION AND DAHLIN’S CONTROL FOR NONLINEAR
DISCRETE TIME OUTPUT FEEDBACK SYSTEMS
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∗
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An improved identification and control for discrete time nonlinear system is presented in this paper. This design approach
contains two phases i) Parameter identification phase ii) Control phase. Once this identification phase is over, the acquired
parameter information can be used to implement any control algorithm. In this paper, Dahlin’s control algorithm is used for
control, as it is more natural than the existing deadbeat control and a new input selection procedure is also evolved to make
the scheme attractive.
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1 INTRODUCTION

In recent years [1, 2] a great deal of progress has
been made in the area of adaptive control of continuous-
time nonlinear systems. In contrast, adaptive control of
discrete-time nonlinear systems remains a largely un-
solved problem. The few existing results [3–5] can only
guarantee global stability under restrictive growth condi-
tions on the nonlinearities, because they use techniques
from the literature on adaptive control of continuous time
linear systems [6, 7]. In reference [7, 8] that some discrete-
time nonlinear systems with unknown parameters and
randomly distributed noise are explained but they are
not globally stabilized.

The backstepping methodology [1], which provided a
crucial ingredient for the development of solutions to
many continuous-time adaptive nonlinear problems, has a
very simple discrete-time counterpart: one simply “looks
ahead” and chooses the control law to force the states to
acquire their desired values after a finite number of time
steps. One can debate the merits of such a deadbeat con-
trol strategy [9], especially for nonlinear systems [10], but
it seems that in order to guarantee global stability in the
presence of arbitrary non-linearities, any controller will
have to incorporate some form of prediction capability.

In the presence of unknown parameters, however, it
is nearly impossible to calculate these “look-ahead” val-
ues of the states. Furthermore, since these calculations
involve the unknown parameters as arguments of arbi-
trary nonlinear functions, suitable parameters estimation
method is applicable, since all of them require a linear
parameterization to guarantee global results. This is the
biggest obstacle to providing global solutions for any of
the more general discrete-time nonlinear problems.

In reference [11], a completely different approach was
introduced to obtain a globally stable controller for a
large class of discrete time output feed back nonlinear
system with unknown parameters without imposing any

growth condition on nonlinearities. This result shows that
all the parameters information, necessary for control pur-
poses, will be available after 2nr0 steps at most, where
n is the dimension of the system and r0 is the dimension
of the regressor subspace. If the dimension of the sys-
tem/regressor subspace increases it takes long time for
values of the parameter to converge.

The proposed algorithm overcomes such a difficulty for
the convergence of the parameters of the system. The im-
proved scheme suggested to minimize the length of this
interval, and hence it is important for transient perfor-
mance considerations, as this will prevent the state from
becoming too large during the identification phase. Once
this active identification phase is over, the values of the
acquired parameters can be used to implement any con-
trol strategy as if the parameters were completely known.
Also we have developed a straightforward Dahlin’s control
algorithm for control purpose. The general block diagram
of output feed back system is shown in Fig. 1.

2 PROBLEM FORMULATION

The systems considered in this paper is described
in equation (1) which comprise of all systems that can
be transformed via a global parameter-independent dif-
femorphism into the so-called parameter-output-feedback
form [4]

x1(t + 1) = x2(t) + Θ⊤Ψ1

(
x1(t)

)

...

xn−1(t + 1( = xn(t) + Θ⊤Ψn−1

(
x1(t)

)

xn(t + 1) = u(t) + Θ⊤Ψn

(
x1(t)

)

y(t) = x1(t)

(1)

where Θ ∈ Rp is a vector of unknown constant parame-
ters and Ψi , for i = 1, . . . , n are p × 1 nonlinear vector
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Fig. 1. Block diagram of output feedback system.

functions. The name “parameter-output-feedback-form”
denotes the fact that the nonlinearities Ψi are multiplied
by unknown parameters, which depend only on the out-
put y , which is the only measured variable. The states
x2, . . . , xn are not measurable. It is important to note
that the functions Ψi are not restricted by any type of
growth conditions

2.1 A second order example

To illustrate the difficulties present in this problem, let
us consider the case when the system is of second order
ie,

x1(t + 1) = x2(t) + Θ⊤Ψ1,t

x2(t + 1) = u(t) + Θ⊤Ψ2,t

y(t) = x1(t)

(2)

and rewrite it in the following scalar form:

x1(t+2) = x2(t+1)+Θ⊤Ψ1,t+1 = u(t)+Θ⊤[Ψ2,t+Ψ1,t+1]

= u(t) + Θ⊤[Ψ2,t + Ψ1(x2(t) + Θ⊤Ψ1,t] = u(t)+

Θ⊤[Ψ2,t + Ψ1(u(t − 1) + Θ⊤(Ψ2,t−1 + Ψ1,t))] . (3)

Even if Θ is known, the control u(t) would only be able
to affect the output x1 at time t+2. In other words given
any initial conditions x1(0) and x2(0), we have no way
of influencing x1(1) through u(0).The best way is drive
x1(2) to zero and keep it there.

2.2 Deadbeat and Dahlin’s control law

From the above equations we can write the control
equation, the choice of deadbeat control

u(t) = yd(t + 2) − Θ⊤ [Ψ2,t + Ψ1,t+1] = yd(t + 2)−

Θ⊤
[
Ψ2,t +Ψ1

(
u(t − 1)+Θ⊤(Ψ2,t−1 +Ψ1,t)

)]
, t ≥ 1 (4)

would yield x1(t) = yd(t) for all t ≥ 2 and would achieve
the objective of global stabilization. Using the equation

(4) the general deadbeat control law can be written as
follows:

u(t) = yd(t + n) − Θ⊤

n∑

k=1

Ψk,t+n−k (5)

and that will globally stabilize the system equation (1)
and yield x1(t) = yd(t), t ≥ n . Here the deadbeat con-
trol law is used only because it makes the presentation
simpler. All the arguments made here are equally appli-
cable to any other discrete-time control strategy; however,
from a strictly technical point of view deadbeat control
is perfectly acceptable in this case, for the following two
reasons.

1. A purely discrete-time problem is only considered.
Hence the well-known problems of poor inter-sample
behaviour of deadbeat control of discrete-time systems
do not arise.

2. Deadbeat control cannot give rise to instability be-
cause of the special structure used here, when applied
to nonlinear systems.

In this paper, Dahlin’s control algorithm has been de-
veloped for control, as it is practically implementable
compared to the deadbeat control. It can be shown that
Dahlin’s control law is:

u(k − n + 1) =
1

τ

[[
u(k − n) + Θ⊤

n∑

i=1

Ψi,t−i

][
τ − ∆T

]

+ ∆Tkcyd(k + n)
]
− Θ⊤

n∑

i=1

Ψi,k+n(i+1) (6)

where, τ is the desired on that response of the time
constant, ∆T is the sampling time and kc is system gain.
This control algorithm will yield x1(t) = yd(t), t ≥ n .
All the arguments made here are equally applicable to
any other discrete-time control strategy.

3 ACTIVE IDENTIFICATION SCHEME

Let us now elaborate further on the above outlined ap-
proach by presenting in detail the two most challenging
ingredients, namely the precomputation scheme and the
input selection for active identification. To do this, we re-
turn to the general output-feedback form (1) and rewrite
it in the following scalar form.

x1(t + n) = x2(t + n − 1) + Θ⊤Ψ1

(
x1(t + n − 1)

)

= x3(t + n − 2) + Θ⊤Ψ2

(
x1(t + n − 2)

)
+

Θ⊤Ψ1

(
x1(t + n − 1)

)
= · · · =

u(t) + Θ⊤

n∑

k=1

Ψk

(
x1(t + n − k)

)
(7)

In order to implement the control given in equations (5)

& (6), we need to calculate (at time t)
n∑

k=1

Ψk,t+n−k and

then Θ⊤
n∑

k=1

Ψk,t+n−k . Since

n∑

k=1

Ψk,t+n−k =

n∑

k=1

Ψk

(
x1(t + n − k)

)
(8)
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Fig. 2. Precomputation procedure.

Fig. 3. Input selection algorithm.

the values of x1(t+1), . . . , x1(t+n−1) must be computed
at time t first. Using the equation (7), we express x1(t +
1), . . . , x1(t + n − 1) as follows:

x1(t + I) = u(t − n + i) + Θ⊤

n∑

k=1

Ψl

(
x1(t + i − k)

)
, (9)

i = 1, . . . , n − 1. Substituting i = 1 into this equation,
we see that the value of x1(t + 1) is equal to the sum of

Θ⊤
n∑

k=1

Ψk,t+1−k and u(t − n + 1). Since both

u(t−n+1) and
n∑

k=1

Ψk,t+1−k are known at time t , we can

precompute (at time t) x1(t+1), provided we replace Θ

by Θ̂. Next, to examine the calculation of x1(t + 2) at
time t . Substituting i = 2 in equation (9), we obtain

x1(t+2) = u(t−n+2)+Θ⊤

n∑

k=1

Ψk

(
x1(t+2−k)

)
. (10)

Substitute n = 2 and Θ by the latest value Θ̂

x1(t + 2) = u(t) + Θ⊤
[
Ψ1

(
x1(t + 1)

)
+Ψ2

(
x1(t)

)]
. (11)

Since u(t) is known at time t , pre-computing x1(t + 2)

can be achieved through the calculation of Ψ1

(
x1(t +1)

)

and Ψ2

(
x1(t)

)
at time t . To calculate x1(t + i) we mod-

ified the existing pre-computational procedure shown in
Fig. 2. Equation (9) implies that precomputing this vector
provides enough information to determine the values of
x1(t+1), x1(t+n−1) at time t . To implement the equa-

tions (5) and (6), we still need the value of
n∑

k=1

Ψk,t+n−k .

This leads finally to the conclusion that pre-computing
at time t , the vector




Θ̂⊤

∑n

k=1 Ψk,t+1−k

...
Θ̂⊤

∑n

k=1 Ψk,t+n−k



 (12)

is sufficient to implement the equations (5) and (6).

3.1 Input selection algorithm

So far we have seen how to precompute the values of
the future states and the vectors associated with them.
We can also prove the existence of finite time ttf

by using
the control input ‘u ’ to drive the output x1 to values that
yield linearly independent directions for the vectors φi .
The input selection takes place wherever necessary during
the identification phase, that is, wherever we see that the
system will not produce any new directions on it own.
The flow chart in Fig. 3 gives detailed information about,
how the u(t) is being selected when the identification is
carrying on.

Steps for Input Selection Algorithm:

Step 1: At time t , measure x1(k) and compute φ using
Ψ1,k, Ψ2,k, . . . , Ψn,k .

Step 2: If φ⊤

k Pk−1φk 6= 0 is true updating is needed with

update algorithm u(k + 1) = φ⊤

k Pk−1φk Go to step 1.

Step 3: Else u(k+1) = u(k) and control action is taken.

3.2 Orthogonalized projection algorithm

Consider the problem of estimating an unknown pa-
rameter vector ‘Θ’ from a simple model of the form

y(t) = φ(t − 1)⊤Θ (13)

where, y(t) denotes the scalar system output at time t ,
and φ(t−1) denotes a vector that is a linear or nonlinear
function of past measurements

Y (t − 1) = {y(t − 1), y(t − 2), . . . } ,

U(t − 1) = {u(t− 1), u(t − 2), . . . } .
(14)
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The orthogonalized projection algorithm for the system
designed by equation (13) starts with an initial estimate
Θ0 and the p× p identity matrix P−1 , and then updates
the estimate Θ and the covariance matrix P for t ≥ 1
through the recursive expressions.

At each time t , the only measurement is the output
x1(t).

Θ̂t+1 =

{
Θ̂t +

Pt−1φt

φ⊤
t Pt−1φt

(
(xt − φ⊤

t Θ̂t

)
if φ⊤

t Pt−1φt 6= 0 ,

θ̂ if φ⊤

t Pt−1φt = 0 , (15)

Pt =





Pt−1 −

Pt−1φtφ⊤

t Pt−1

φ⊤
t Pt−1φt

if φ⊤

t Pt−1φt 6= 0 ,

Pt−1 if φ⊤
t Pt−1φt = 0 . (16)

Thus, (15) and (16) are employed to compute recursively
the estimate Θt and the covariance matrix Pt . This al-
gorithm has the useful properties, which are given here
without proof [11].

3.3 Recursive least square algorithm

The recursive least squares estimate of the unknown
parameters Θ is

Θ̂t+1 = Θ̂t +
Pt−1φt

1 + φ⊤
t Pt−1φt

(
x1,t+1 −ut−1 − Θ̂⊤

t φt

)
(17)

in which Pt is computed through

Pt = Pt−1 −
Pt−1φtφ

⊤
t Pt−1

1 + φ⊤
t Pt−1φt

. (18)

A standard approach to determine the control input
would be to use the estimate (18) in a certainty-equiv-
alence control law:

u(t) = −Θ̂⊤

t φt−1 = −Θ̂⊤

t t
[
Ψ1(x1,t−1) + Ψ2(x1,t−2)

]
. (19)

3.4 Steps for Active Identification (Precomputa-
tion and Input Selection) and Control

For convenience the algorithm given is based on the
second order system. The steps are as follows:

Step: 1 Initialize x1(0), x2(0), u(0), Θ̂(0), P (0), k

Step: 2 Measure x1(k). Because output y = x1 , which
is the only measured variable: the state x2, . . . , xn are
not measurable.

Step: 3 Calculate Ψ1

(
x1(k)

)
, Ψ2

(
x1(k)

)
.

Compute regressor subspace

φ(k) =
n∑

i=1

ΨI

(
x1(t + n − k)

)

Step: 4 Evaluate the value of x(k), x̂(k) using the fol-
lowing relationship

x(k) = Θ⊤φ(k) and x̂(k) = Θ̂⊤(k)φ(k)

Step: 5 Calculate the residue e(k) = x(k) − x̂(k) also
calculate ‘D ’ using regressor & covariance matrix ‘P ’.
where, D = φ⊤(k)P (k)φ(k)

Step: 6 Check φ⊤P (k)φ(k) 6= 0 if this is true, calculate
the following

P (k + 1), Θ̂(k + 1), u(k + 1) = D , go to step: 7

else

Updating the system parameters and controller output

is not needed. P (k + 1) = P (k) and Θ̂(k + 1) = Θ̂(k)

Step: 7 Check abs
(
Θ − Θ̂

)
< 0.001 if it is true

Calculate

u(k + 1) (for different control strategy)

x1(k) = u(k) + Θ⊤Ψ1,k

else

x1(k) = x2(k) + Θ⊤Ψ1

(
x1(k)

)

Calculate

x2(k + 1) = u(k) + Θ⊤Ψ2

(
x1(k)

)

Update k = k + 1, then go to step: 2

Flowchart representation of the algorithm is shown in

Fig. 4.

4 SIMULATION RESULTS

4.1 Identification and Deadbeat Control

In order to evaluate the performance of the active

identification procedure and Deadbeat controller design,

let us consider the following example:

x1(k) = x2(k) + Θ⊤Ψ1

(
x1(k)

)
+αξt

x2(k + 1) = u(k) + Θ⊤Ψ2

(
x1(k)

)
+αζt

y(t) = x1(t)

(20)

where Θ⊤ = [1 0.8 − 1 1] is the unknown parameter

and Ψ1 , Ψ2 are nonlinear function of x1 .

Ψ1(x1) =
[
0 0 log(1 + (x2

1 − 2x1)
2 x1 sin(x1 − 2)

]⊤

Ψ2(x1) =
[
(ex1 − 1) sin(x1 − 2)/(x12 + 3) (21)

(x1 − 0.5x2) sin x1 0 0
]⊤

and α is a constant. In order to illustrate the robust-

ness of the modified algorithm with respect to additive

stochastic disturbances (ξt, ζt). For a fixed value of t , ξt ,

ζt are uniform random variables. Further the sequence

ξt , ζt are mutually independent.

To illustrate the performance of the modified algo-

rithm we present the simulation result for two different

choices of α (α = 0; α = 0.05). To demonstrate the

algorithm we provide the explicit calculations for the in-

termediate steps of this procedure when system is noise

free (α = 0) and initial condition (1.826, 2.115) is chosen.
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Fig. 4. Identification and Input Selection Algorithm.

Case 1

Assuming the initial conditions is (1.826, 2.115) for
the simulation purpose. The estimator starts with Θ0 =

[1 1 1 2]⊤ and P0 = I , where I denotes a 4×4 identity
matrix.

At t = 0, measure x1(0) = 1.826;
Ψ1,0 = [0 0 0.0962 − 0.3161],
Ψ2,0 = [−0.1230 0.1537 0 0].
Assume u(0) = 0.

• At time t = 1 measure x1(1) = 1.7027; evaluate
Ψ1,1 = Ψ2,1 = [0 0 0 0]. Using this Ψ1,1 + Ψ2,0 =

[−0.1230 0.1537 0 0]. We see that Θ̂(1) = Θ̂(0) and
P (1) = P (0). As we have not yet collected information
to choose u(1), we choose u(1) = 0, by default.

• At time t = 2 u(1) = 0; evaluate
Ψ1,2 = [0 0 0.2281 − 0.3988];
Ψ2,2 = [−0.1906 0.2509 0 0].
Using this Ψ1,2 + Ψ2,1 = [0 0 0.2281 − 0.3988];
φ(2) = [−0.1230 0.1537 0.2281 − 0.3988];

P (2) =





1 0 0 0
0 1 0 0
0 00.91530.2785
0 00.27850.0847



 ,

Θ̂(2) = [1 1 1.109 1.6316];
u(2) = 0.1092; x1(2) = −0.7269; x2(2) = 0.0101;

• At t = 3; Ψ1,3 = [0 0 1.5951 0];
Ψ2,3 = [0.0360 0.6586 0 0]; Using this Ψ1,3 + Ψ2,2 =
[−0.1906 0.2509 1.5951 0.2929] = φ(3);

P (3) =





0.6571 0.4287 0.1950 0.0593
0.4287 0.4640 −0.2438−0.0742
0.1950 −0.2438 0.8044 0.2447
0.0593 −0.0742 0.2447 0.0745





Θ̂(3) = [1.535 0.331 0.8038 1.5391];
u(3) = 0.0331;
x1(3) = −1.2921; x2(3) = 0.6820;

• At t = 4; Ψ1,4 = [0 0 2.9397 − 0.1938];
Ψ2,4 = [−0.0192 2.0338 0 0]; φ(4) = Ψ1,4 + Ψ2,4 =
[0.0360 0.6586 2.9393 − 0.1938];

P (4) =





0.6079 0.4882 −0.0039 0.0012
0.4482 0.3921 −0.0032−0.0010
−0.0039 −0.0032 0.0000 0.0000
−0.0012 −0.0010 0.0000 0.0000



 ,

Θ̂(3) = [1.0886 0.8711 − 1.006 0.9998];
u(4) = 1.9627; x1(4) = −2.3611; x2(4) = 1.6608;

• At t = 5; Ψ1,5 = [0 0 3.8003 − 2.3839];
Ψ2,5 = [−0.0881 3.3539 0 0]; φ(4) =
Ψ1,5 + Ψ2,3 = [−0.0192 2.0338 3.8003 − 2.3839];

P (5) =





0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



 Θ̂(5) = [1 0.8 − 1.0 1];

u(5) = 0.0188; yields x1(5) = 0.00

• For time t > 5 repeat the process presented for t = 5
ie, precomputed the next output and corresponding
regressor vector and then choose the control input to
drive x1(t + 2) = 0 for any t > 5;

Case 2

The values of α is changed to α = 0.05, so that the
system is perturbed by small additive random noise.

Figures 5–12 shows the simulation results correspond-
ing to either noise free or small additive random noise

of the given system which starts from initial conditions
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Fig. 5. Identification using Orthogonal projection algorithm
(x1(0) = 0.5, x2(0) = 0) and α = 0.

0

Fig. 6. Identification using Orthogonal projection algorithm
(x1(0) = 1.826, x2(0) = 2.115) and α = 0.

150 5 10 20

150 5 10 20

150 5 10 20

150 5 10 20

Fig. 7. Identification using Orthogonal projection algorithm
((x1(0) = 0.5, x2(0) = 0) and α = 0.05.

Samples

Fig. 8. Identification using Orthogonal projection algorithm
(x1(0) = 1.826, x2(0) = 2.115) and α = 0.05.

(0.5, 0) or (1.826, 2.115). For the purpose of illustrat-

ing the advantage of proposed method, these simula-

tion results are compared with two different identification
strategies. The identification procedure is used for param-

eter estimation then the control law is used for stabiliza-

tion. The resulting system parameters (Θ), control input
(u), output (y ) and its corresponding error are shown in

subplots 1 to 4 of Fig. 5–13.

The conclusions that can be derived from Fig. 5–13

can be summarized as follows.

1. When the system is noise free (α = 0.0) and starts

with initial condition (0.5, 0) or (1.826, 2.115), then
the orthogonalized projection algorithm and RLS ap-

proaches will stabilize the system. However, the tran-

sient performance of orthogonalized projection is sig-
nificantly better than RLS technique. This is illus-

trated in Fig. 5, 6 and Fig. 9, 10. From the simulation

results it is observed that all the parameter informa-

tion necessary for control purposes available less than

2nr0 steps. In this work, identification phase is com-
pleted almost 5th instant. In literature [11] it is shown

that in the absence of noise RLS technique will re-

sult in instability for large initial condition. This was

overcome by the proposed method. But the system

parameter takes long time to convergence (sluggish in

nature). From the results the input selection algorithm

developed is superior to existing algorithm.

2. In presence of small additive random noise both

orthogonalized projection algorithm and RLS ap-

proaches maintains its stabilization properties, there

by exhibiting some degree of robustness. This is illus-

trated in Fig. 7, 8, and Fig 11, 12. From the results we

observe that an orthogonalized projection algorithm

has better transient properties and all the parameter

information necessary for control purposes are avail-

able almost 10th sample instant.
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Fig. 9. Identification using RLS algorithm
(x1(0) = 0.5, x2(0) = 0) and α = 0.

Fig. 10. Identification using RLS algorithm
(x1(0) = 1.826, x2(0) = 2.115) and α = 0.

Fig. 11. Identification using RLS algorithm
(x1(0) = 0.5, x2(0) = 0) and α = 0.05.

Fig. 12. Identification using RLS algorithm
(x1(0) = 1.826, x2(0) = 2.115) and α = 0.05.

Fig. 13. Identification using Orthogonal projection algorithm
(x1(0) = 0.5, x2(0) = 0) and α = 0.

Fig. 14. Identification using Orthogonal projection algorithm
(x1(0) = 1.826, x2(0) = 2.115) and α = 0.
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Fig. 15. Identification using Orthogonal projection algorithm
(x1(0) = 0.5, x2(0) = 0) and α = 0.05.

Fig. 16. Identification using Orthogonal projection algorithm
(x1(0) = 1.826, x2(0) = 2.115) and α = 0.05.

Fig. 17. Identification using RLS algorithm
(x1(0) = 0.5, x2(0) = 0) and α = 0.

Error in output

Fig. 18. Identification using RLS algorithm
(x1(0) = 1.826, x2(0) = 2.115) and α = 0.

4.2 Identification and Dahlin’s Control

To illustrate the performance of the modified algo-
rithm we present the simulation result for the same ex-
ample with two different values of α (α = 0; α = 0.05).
Assuming the initial conditions (0.5, 0), (1.826, 2.115),
and u(0) = 0 for the simulation is carried out. Also
τ = 1, ∆T = 0.1 and kc = 1.The estimator starts with

Θ̂0 = [1 1 1 2]⊤ and P0 = I , where I denotes a 4 × 4
identity matrix.

• For time t > 5 repeat the process presented for t = 5
ie, precomputed the next output and corresponding
regressor vector and then choose the control input to
drive x1(t + 2) = 0 for any t > 5;

The values of α is changed to α = 0.05, so that the
system is perturbed by small additive random noise. Fig-
ures 13–20 shows the simulation results corresponding to
either noise free or small additive random noise of the
given system which starts from initial conditions (0.5, 0)

or (1.826, 2.115). For the purpose of illustrating the ad-
vantage of proposed method, these simulation results are
compared with two different identification strategies. The
identification procedure is used for parameter estimation
then the control law is used for stabilization. The conclu-
sions that can be derived from Fig. 13–20 can be summa-
rized as follows.

1. When the system is noise free (α = 0.0) and starts
with initial condition (0.5, 0) or (1.826, 2.115), then
both the orthogonalized projection algorithm and RLS
algorithm stabilize the system. This is illustrated in
Fig. 13, 14 and Fig. 17, 18 (with subplots).

2. When some small noise (0.05) is added, both the al-
gorithm gives stabilized output. However orthogonal
projection algorithm settles down faster than the other
one. This is observed in Fig. 15, 16 and Fig. 19, 20
(with subplots).

3. In this section Dahlin’s control algorithm was used for
control purpose after suitable adaptation. From the
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Fig. 19. Identification using RLS algorithm
(x1(0) = 0.5, x2(0) = 0) and α = 0.05.

simulated result it may be noted that it is practically
implementable compared to the existing deadbeat con-
trol.

5 CONCLUSION

In this paper an improved identification and input se-
lection algorithm for nonlinear discrete time output feed-
back system is presented. This active identification is ob-
tained in a finite (2r0/2n) interval. Once the active iden-
tification is over the acquired parameter information can
be used to implement any control algorithm as if the pa-
rameter were completely known. The input selection pro-
cedure developed in this paper guarantees that the active
identification is carried out in finite duration. Also we
developed a Dahlia’s strategy for control purpose that
is useful for practical implementation. In order to prove
the proposed algorithm is robust a small additive random
noise to the system is introduced and from the result we
observed that the identification phase is completed faster
than existing scheme.
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