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ABSTRACT. An asymptotically stable direct adaptive fuzzy PI sliding mode 
controller is proposed for a class of nonlinear uncertain systems. In contrast to 
other existing approaches of handling disturbances, the proposed approach 
does not require this bound to be known, only requiring that it exists. 
Moreover, a PI control structure is used to attenuate chattering. The approach  
is applied to stabilize an open-loop unstable nonlinear system as well as          
the Duffing forced-oscillation chaotic nonlinear system amid significant 
disturbances. Analysis of simulations reveals the effectiveness of the proposed 
method in terms of a significant reduction in chattering while maintaining 
asymptotic convergence.   

 
1. Introduction 

     The control of nonlinear uncertain systems has always been a challenging and yet 
rewarding problem and, since conventional methods such as feedback linearization 
do not adequately address the inherent complexities and uncertainties in real systems 
and may fail [13], many new approaches for solving the problem have been 
proposed [8, 13]. Among methods that address uncertainty in plant dynamics is 
adaptive control, which aims to model and track changing system/control 
parameters in real time. Adaptive control methods, however, generally guarantee 
parameter convergence only if parameter changes are slow enough [2,11]. 
Furthermore, the existing adaptive control approaches require the general structure 
of the plant, such as its order, to be known.      

      In comparison, variable structure control (VSC) and in particular sliding mode 
control (SMC) aim to provide good robustness against system uncertainties and 
external disturbances [13,16]. Assuming certain characteristics of the mathematical 
model of the plant under control and that system uncertainties remain within known 
intervals, SMC generally provides guaranteed asymptotic stability. However, due to 
its discontinuous control design, this approach suffers from another drawback, 
commonly referred to as chattering. The chattering problem is usually resolved by 
introducing a boundary layer around the sliding surface and applying continuous 
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control inside this boundary layer. However, the state trajectory of the resulting 
system may no longer converge to the sliding surface and asymptotic convergence is 
usually lost [9]. 

      Fuzzy logic, an alternative to conventional control methodologies, and 
particularly in control of complex uncertain systems, has been the focus of 
numerous studies in the past two decades [19]. This is mainly due to the possibility 
of making use of fuzzy knowledge-based control as a complement to mathematical 
knowledge in dealing with systems whose dynamics are not so well understood and 
whose models can not be so conveniently established [10,18]. However, pure fuzzy 
logic based systems generally suffer from the increasing number of rules, i.e. the 
curse of dimensionality, while also being unable to generally guarantee closed-loop 
stability. A hybrid combination of the VSC methodology, fuzzy logic, and adaptive 
control may therefore provide an attractive ground for designing robust control 
systems with high degrees of nonlinearities and uncertainties [6, 14]. 

      In following the above analysis, recent research has proposed various adaptive 
fuzzy sliding mode control (AFSMC) strategies such as in [3,4,5,7,15,17]. 
Specifically, [17] proposed an adaptive fuzzy sliding mode for a class of non-affine 
nonlinear systems with relative degree equal to the system’s degree. A new scheme 
of adaptive fuzzy sliding mode control, which incorporates adaptive model tracking 
with sliding mode and fuzzy systems, has been investigated in [4]. In [15] a new 
design of an adaptive fuzzy sliding mode controller for linear systems with 
mismatched time varying uncertainties has been presented. In [3], fuzzy systems as 
universal approximators and SMC have been used to control a class of nonlinear 
systems. An adaptive law has been introduced that is robust to approximation error 
to improve the approximation accuracy. An indirect adaptive control strategy by 
using a PI control term, which approximated the switching control to minimize the 
amount of chattering, has been devised in [7]. In [5] an adaptive fuzzy sliding mode 
control for robotic manipulators with asymptotic stability has been established. 
Finally, the authors in [12] have proposed an indirect adaptive fuzzy controller for a 
class of nonlinear uncertain systems with bounded disturbances. However, while 
adequately addressing several of the issues in control of complex systems, the above 
approaches are common in their requiring of a known bound for system 
uncertainties. In other words, their results may no longer be held if the bound 
assumptions on system uncertainties are violated.  

 In contrast, we here propose a novel approach to direct adaptive fuzzy PI sliding 
mode control for a class of uncertain nonlinear systems with disturbances that are 
bounded but where these bounds are not known. The proposed direct adaptive PI 
structure attenuates chattering as well as guaranteeing asymptotic stability. The 
method has a general algorithm as previously reported in [1]; here we provide a 
more detailed description and extend the simulation by adding more 
comparisons/analysis. Although our earlier algorithm in [12] was able to control a 
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more general class of nonlinear uncertain systems than the one in this paper, it 
required that the bound of disturbances be known in advance. Therefore, compared 
with the other existing approaches of handling external disturbances, the proposed 
approach has the advantage that it only requires a bound to exist, while the 
magnitude of this bound does not need to be known. One may argue that               
an alternative solution to this problem is to assume a larger bound that would            
be sufficiently large. However, such a large bound would also result in larger 
chattering. 
      This paper is organized as follows. Section 2 formulates the class of nonlinear 
systems under consideration here, and describes the assumptions based on the 
theory of SMC, fuzzy logic systems and universal approximation theorem. In 
Section 3, the proposed direct adaptive fuzzy PI sliding mode control approach is 
presented. To show the effectiveness of the proposed method, in section 4, it is 
applied to two nonlinear systems — an open-loop unstable nonlinear system and a 
chaotic Duffing forced-oscillation stabilization amid significant uncertainties. 
Simulation results indicate the superiority of the approach in presence of 
disturbances. 
 

2. Problem Formulation, Sliding Mode Control and Fuzzy Systems 

2.1. Problem Formulation. Consider a class of SISO n-th order nonlinear systems 
in the following form, 

            
xy

tXdtbutXfx n

=
++= ),()(),()(

 
 

   (1) 

Where f  is an unknown bounded nonlinear function, ],,,[ )1( −= nT xxxX L&  
n

n Rxxx ∈= ],,,[ 21 L is the state vector of the system which is assumed to be 
available for measurement, Ru∈  and Ry∈  are respectively the input and the 
output of the system and ),( tXd  is an unknown, bounded external disturbance, but 
the bound is  unknown.. Without loss of generality, b  is assumed to be an unknown 
positive constant; since if b  is negative, the control law can be derived similarly. In 
other words we have following assumptions. 

Assumption 2.1. The external disturbance ),( tXd is bounded by a constant D , i.e., 

               DtXd ≤),( .    (2)

Remark 2.1. In comparison with other approaches to handling external distur-  
bances, the proposed approach only requires that a bound D exist, but its magnitude 
does not need to be known. 
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The control objective is to design u  such that the state of the system X  follows the 
desired state dX  in presence of uncertainties and disturbances, that is the tracking 
error 

            Tn
d eeeXXE ],,,[ )1( −=−= L&  (3)  

should converge to zero. 

Assumption 2.2. The desired trajectory vector dX  is a known continuous and 
bounded function as below, 

                 cX d < .    (4) 

2.2. Sliding Mode Control. The SMC control problem can be consequently stated 
as follows. For system (1) define a sliding surface by the following scalar function 
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This is a time-varying surface in the state space nR . If the coefficients 1,,1 , −= nici L  
are chosen such that the polynomial 12
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differential equation 0)( =Es  with the initial condition .0)0( =E has the unique 
solution 0)( =tE . Therefore the objective becomes to design a control law that 
forces the state trajectory to a sliding surface 0),()( == tXsEs  in finite time and to 
remain on this surface. For achieving this objective the control law must be chosen 
such that 
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where mη is a positive constant and, 
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Solving the above inequality for )(tu  and using Assumption 2, we have the  
input )(* tu   as follows 
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where, mb ηη ≥ , and guarantees the sliding condition (6), where ,*
equ *

swu are defined 
as follows: 
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and sgn(.) is the sign function. 

However, ),,( tXf  ),( tXd  and b  are generally unknown and cannot be used for 
constructing the control law (9). Furthermore, the chattering due to the switching 
function can invoke undesirable dynamics. 

Here, we attend to the above challenges by proposing a hybrid direct adaptive fuzzy 
sliding mode and an adaptive PI structure. The following section outlines the basic 
characteristics of fuzzy systems that are used in this approach. 
 

2.3. Fuzzy Logic Systems and Universal Approximation Theorem. The 
fuzzy logic systems (FLS) detailed in [20] are briefly reviewed below for continuity 
of discussion. FLS perform a mapping from n

n RUUUU ⊂=××× L21  to RV ⊂ . A 
fuzzy system consists of a fuzzifier, fuzzy rule base, fuzzy inference engine and 
defuzzifier. The fuzzy rule base consists of a collection of canonical fuzzy If-Then 
rules such as, 

ll
nn

ll GyFisxFxR   is    then      and  and     is   if  : 11
)( L         Ml ,,1L=   (12) 

where UxxxX T
n ∈= ],,,[ 21 L  and Vy∈  are respectively the input and output of 

the fuzzy system, M  is the total number of rules; and l
iF  and lG are fuzzy sets in 

iU  and ,V  respectively. The fuzzy inference engine performs a mapping from fuzzy 
sets in U to fuzzy sets in ,V  based on the fuzzy rule base. Furthermore, the 
fuzzifier maps a crisp point UxxxX T

n ∈= ],,,[ 21 L  to a fuzzy set in U  and the 
defuzzifier maps fuzzy sets in V  to a crisp point inV . 
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Using the singleton fuzzifier, a product inference engine and a center average 
defuzzifier, the output of fuzzy system can be expressed as, 
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where, TMyyy ],,,[ 21 L=θ is the center of the output fuzzy membership functions 
and is also the adjustable parameter vector, and T

M XXXX )](,),(),([)( 21 ξξξξ L=  is 
the vector of fuzzy basis functions defined as below, 

    Mj
x

x
X M

l

n

i
iF

n

i
iF

j

l
i

j
i

,,1      ,
))((

)(
)(

1 1

1 L==

∑ ∏

∏

= =

=

µ

µ

ξ .     (14) 

We have the following theorem: 

Theorem 2.1. [20] For any given real continuous function g  on the compact set 
nRU ⊂  and arbitrary 0>ε , there exists a fuzzy system )()( ** XXf Tξθ=  of  the form  

(13) such that  

               ε<−
∈

)()(sup * XgXf
UX

.    (15) 

The above theorem states that the fuzzy systems of the form  (13) can approximate 
any real continuous function to any degree of accuracy. This means the fuzzy 
systems of the form  (13) have the universal approximation property  reported 
earlier in [20]. 
 

3. The Proposed Control Law 

The SMC-based controller in Section 2.2 has two terms as mentioned in (10) and 
(11). Since the nonlinear functions ),( and ),( tXdtXf  are not known in (10), we use 
the fuzzy system, 

            )()|(ˆ 11 XXu T
eq ξθθ =    (16) 

with free parameter ,1θ  to approximate (10). Furthermore, to attenuate chattering, 
when the state is within the boundary layer ϕ<s  (ϕ  is the thickness of the 
boundary layer), a PI-type controller, 
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     ∫+== dtsKsKssu Ip
T

sw  )()|(ˆ 22 ψθθ     (17) 

with ], ,[)( ∫= dtsssTψ and ] ,[2 IP
T KK=θ  is used instead of switching control (11). 

The control action is kept at the saturated value η  when the state is outside the 
boundary layer, i.e. ηθ ≥)|(ˆ 2susw (η is a control parameter) when ϕ>s . We 
propose a controller in the following form: 

             )|(ˆ)|(ˆ)|( 21 θθθ suXuXu sweq −= .     (18) 

Consequently, *
equ  and *

swu  as mentioned in (10) and (11) are the ideal  for eqû  and 

swû , respectively. They can be expressed by the following equations, 
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Thus, the desired control can be written as, 

                )()()( *** tututu sweq −= .   (21) 

The optimal 1θ and 2θ  are defined as follows, 

     ⎥
⎦

⎤
⎢
⎣

⎡
−=

∈∈

*
1

*
1 )|(ˆsupminarg

1
eqeq

RXR
uXu

nM
θθ

θ
, 

 

   ⎥⎦

⎤
⎢⎣

⎡ −=
∈∈

*
2

*
2 )|(ˆ supminarg

2
2

swsw
RsR

usu θθ
θ

. 

    

     (22) 

   

  (23) 

and the minimum approximation error of the fuzzy system can be obtained as 

           )()|(ˆ **
1 tuXu eqeq −= θω      (24) 

Therefore we have the following theorem : 

Theorem 3.1. Consider the nonlinear system (1) and control law (18). The closed-loop 
system signals are bounded and the tracking error converges to zero asymptotically if   
the following adaptation laws hold: 

 )(11 Xsξγθ −=&  
 

(25) 

 



M. -R. Akbarzadeh -T. and R. Shahnazi 40

)(22 ssψγθ =& . (26) 

Proof.  Consider the Lyapunov function candidate: 
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Using (18), (19) and (24) we have 
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Using the adaptation laws (25) and (26) in (29) and recalling that b  is positive we 
have 

)( ssbV ηω −≤& .    (30) 
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From the universal approximation theorem, it can be expected that the term ωs  will 
be very small so 

         0≤V& .    (31) 

From (31) it can be seen that 21,, θθs are bounded. Furthermore, by Assumption 2.2 
the signal dX  is bounded, so the system states X  will be bounded. In order to 
prove that ,0)(lim =
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If 1L∈ω , then from (33) we have 1Ls∈ . It can be seen that all the terms in the 
right-hand side of (7) are bounded, so ∞∈ Ls& . Using the Barbalat lemma [13], we 
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.                                                                   

The algorithm of the proposed method is depicted in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

FIGURE 1. The overall scheme of the proposed method (a) Block diagram (b) 
Boundary layer representation 
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4. Simulation Examples 
In this section the proposed controller is applied to two nonlinear systems. In 

the first example a first order uncertain nonlinear system is considered. In the 
second example the Duffing forced-oscillation system is used. 

Example 4.1. Consider a first order nonlinear system as follows 

                )()(
1
1 tdtu

e
ex x

x
++

+
−

=
−

&      (34) 

where )(tu  is the control signal and )(td  is a bounded disturbance, in which the 

bound is also unknown. Without loss of generality we use, )3sin(5)( ttd += . The 

desired trajectory is )sin(txd = , 5.1)0( =x  and es = . Two cases are considered: the 

first uses the conventional SMC proposed in [13] and the second uses the method 

proposed in this paper. 
 

Case 1 (Conventional SMC): By [13], if we write )()(ˆ)( xfxfxf ∆+=  the 

conventional SMC method needs to know )(ˆ xf  and the upper bound of )(xf∆ . 

For system (34), if 1)(ˆ =xf , x

x

e
exf −

−

+
−=∆

1
2)( , and so, 2)( =≤∆ Fxf . Therefore, 

from [13], the conventional SMC can be written as: 

            )sgn()()(ˆ)( sFxftu +−−= η     (35) 

where η  is a positive constant as a control parameter. Here, we choose 1.0=η . 
First, it is assumed that there is no external disturbance, i.e. 0)( =td . Figure 2 
represents the results. 

From Figure 2, the desirable tracking is achieved at the expense of high frequency 
oscillation (chattering). Now assume an external disturbance ( )3sin(5)( ttd += ) at 

st 10=  that had not been earlier accounted for in the control law. The results are 
depicted in Figure 3. It can be seen from Figure 3 that the conventional SMC is not 
only fragile with respect to such unknown external disturbances, but also suffers 
from significant chattering which is a harmful phenomenon in practical applications. 
One may suggest that this problem can be overcome by assuming a larger bound on 
the uncertainty )(xf∆ in the design of control law, however one should consider the 
following two points. First, external disturbances are not always predictable in real 
systems, and second, the assumption of a larger bound for uncertainties, even 
though it may help guarantee stability, is always at a significant cost of deteriorating 
performance by increasing chattering. The proposed method, as shown in the 
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following set of simulations, is significant since it does not require a bound on these 
uncertainties to be known, and therefore builds robustness against such unknown 
disturbances. 

 
FIGURE 2. Conventional SMC without any external disturbance (a) Desired output 

(dashed), actual state (Solid) (b) Control input (c) Error signal 

 
FIGURE 3. Conventional SMC with external disturbance (a) Desired output 

(dashed), actual state (solid) (b) Control input (c) Error signal 
 

Case 2 (Proposed method): In this case, we utilize the proposed method           
for controlling the uncertain nonlinear system (34). The parameters 

,01.0=η ,1001 =γ 8002 =γ  and 5.0=ϕ  are chosen. ,800)0( =PK  900)0( =IK  are 
selected. All the parameters are chosen to achieve the best transient control 
performance considering the requirement of stability and possible operating 
conditions. The universe [-3,3] is partitioned into the following six fuzzy input 
membership functions: 
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as shown in Figure 4. 
 

 
FIGURE 4. Membership functions defined in universe [-3,3], from left to right 

.3,2,1,1,2,3 PPPNNN µµµµµµ  
 

The initial fuzzy parameters are chosen randomly in the interval [0,1] and at first it is 
assumed that initially there is no external disturbance, i.e. 0)( =td . Figures 5 and 6 
represent the results. 

It can be seen from Figures 5 and 6 that perfect tracking is achieved while chattering 
is not observed.  
Now assume a sudden external disturbance ( )3sin(5)( ttd += ) occurs at       

.10st =  The results are depicted in Figures 7 and 8. Simulation results show the 
effectiveness of the proposed method to cope with uncertainty, disturbances and 
chattering . 
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FIGURE 5. Proposed method without external disturbance (a) Desired output  

(dashed), actual state (solid) (b) Control input (c) Error signal 

 
FIGURE 6. Variation of PK and IK  with respect to time 

 

FIGURE 7. Proposed method with external disturbance (a) Desired output (dashed), 
actual state (solid) (b) Control input (c) Error signal 
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FIGURE 8. Variation of PK and IK  with respect to time 

 

Example 4.2. Consider the Duffing forced-oscillation system in the form of 

           
)()()cos(121.0 3

122

21

tdtutxxx

xx

+++−−=

=

&
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    (37) 

where )(tu  is the control signal and )4sin(4)( ttd += is an unknown bounded 
disturbance, and the bound is also unknown. The desired trajectory is ),sin(txd =  
the initial condition is [2,2]T and .2ees += &  Again, as in example 4.1, two cases are 
considered : 

Case 1 (Conventional SMC method): From [13], if we write )()(ˆ)( xfxfxf ∆+=  

the conventional SMC method needs to know )(ˆ xf  and the upper bound of ).(xf∆  

For system (37), it can be determined if 3
121.0)(ˆ xxxf −−=  and ),cos(12)( txf =∆  

then, 12)( =≤∆ Fxf . Therefore, from [13], the conventional SMC can be written as 
(35). We choose 1.0=η , As in the previous example, at  first we assume that there 
are no external disturbances, i.e., 0)( =td . Figure 9 represents the results. From 
Figure 9, the perfect tracking is achieved at the expense of high frequency oscillation 
(chattering). Now, assume a sudden external disturbance ( )4sin(4)( ttd += ) occurs 
at st 20= . The results are depicted in Figure 10. It can be seen from Figure 10 that 
the conventional SMC is not only fragile when external disturbances exceeds its 
assumed bounds, but also suffers from chattering which is a harmful phenomenon 
in practical applications. 
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FIGURE 9. Conventional SMC without any axternal disturbance (a) Desired output 

(dashed), actual state (solid) (b) Control input (c) Error signal 

 
FIGURE 10. Conventional SMC with external disturbance (a) Desired output  

(dashed), actual state (solid) (b) Control input (c) Error signal 
 

Case 2 (Our method): In this case, we utilize the proposed method for 
controlling the uncertain nonlinear Duffing-forced system (37). The parameters 

,01.0=η 101 =γ , 1002 =γ , 1=ϕ , ,10)0( =PK 80)0( =IK  are selected to achieve the 
best transient control performance considering the requirement of stability and 
possible operating conditions. The universe [-3,3] is partitioned into six fuzzy input 
memberships as in (36). The initial condition of fuzzy parameters are chosen 
randomly in the interval [0,1]. At first it is assumed there is no external disturbance, 
i.e., 0)( =td . Figures 11 and 12 represent the results. It can be seen from Figures 11 
and 12 that tracking is achieved and chattering is not observed. Now, assume a 
sudden external disturbance ( )4sin(4)( ttd += ) occurs at st 20= . The results are 
depicted in Figures 13 and 14. From the simulation results it can be seen that the 
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proposed controller not only controls the system amid uncertainty and external 
disturbances, but it also copes well with chattering. 

 
FIGURE 11. Proposed method without external disturbance (a) Desired output  

(dashed), actual state (solid) (b) Control input (c) Error signal 

 
FIGURE 12. Variation of PK and IK  with respect to time 

 
FIGURE 13. Proposed method with external disturbance (a) Desired output 

(dashed), actual state (solid) (b) Control input (c) Error signal 
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FIGURE 14. Variation of PK and IK  with respect to time 

 

Finally Figure 15 shows the states in phase plane for four different initial conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15. Phase-plane representation for different initial conditions:  

(a) Tx ]2,2[)0( =  (b) Tx ]2,2[)0( −=  (c) Tx ]5,2[)0( −−=  (d) Tx ]4,3[)0( −= . 
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5. Discussion and Conclusion 

      In this paper, a direct adaptive fuzzy sliding mode controller for a class of 
nonlinear uncertain systems is investigated. The proposed method is robust in the 
presence of uncertainties and bounded external disturbances. Comparing the 
proposed method with the other existing approaches, there is an important 
difference when external disturbances are assumed. Here, the value of a bound does 
not need to be known, i.e. knowing that it exists is sufficient to prove asymptotic 
stability of the closed loop system. For attenuating the chattering problem, the 
control law was furthermore designed with an adaptive PI term. In future work, we 
aim to extend this methodology to more general forms of nonlinear systems. We 
also aim to propose a methodology for auto tuning the adaptive gains.  
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