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DIRECT ADAPTIVE FUZZY PI SLIDING MODE CONTROL OF SYSTEMS
WITH UNKNOWN BUT BOUNDED DISTURBANCES

M. -R. AKBARZADEH -T. AND R. SHAHNAZI

ABSTRACT. An asymptotically stable direct adaptive fuzzy PI sliding mode
controller is proposed for a class of nonlinear uncertain systems. In contrast to
other existing approaches of handling disturbances, the proposed approach
does not require this bound to be known, only requiring that it exists.
Moteovet, a PI control structure is used to attenuate chattering. The approach
is applied to stabilize an open-loop unstable nonlinear system as well as
the Duffing forced-oscillation chaotic nonlinear system amid significant
disturbances. Analysis of simulations reveals the effectiveness of the proposed
method in terms of a significant reduction in chattering while maintaining
asymptotic convergence.

1. Introduction

The control of nonlinear uncertain systems has always been a challenging and yet
rewarding problem and, since conventional methods such as feedback linearization
do not adequately address the inherent complexities and uncertainties in real systems
and may fail [13], many new approaches for solving the problem have been
proposed [8, 13]. Among methods that address uncertainty in plant dynamics is
adaptive control, which aims to model and track changing system/control
parameters in real time. Adaptive control methods, however, generally guarantee
parameter convergence only if parameter changes are slow enough [2,11].
Furthermore, the existing adaptive control approaches require the general structure
of the plant, such as its order, to be known.

In comparison, variable structure control (VSC) and in particular sliding mode
control (SMC) aim to provide good robustness against system uncertainties and
external disturbances [13,16]. Assuming certain characteristics of the mathematical
model of the plant under control and that system uncertainties remain within known
intervals, SMC generally provides guaranteed asymptotic stability. However, due to
its discontinuous control design, this approach suffers from another drawback,
commonly referred to as chattering. The chattering problem is usually resolved by
introducing a boundary layer around the sliding surface and applying continuous
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control inside this boundary layer. However, the state trajectory of the resulting
system may no longer converge to the sliding surface and asymptotic convergence is
usually lost [9].

Fuzzy logic, an alternative to conventional control methodologies, and
particularly in control of complex uncertain systems, has been the focus of
numerous studies in the past two decades [19]. This is mainly due to the possibility
of making use of fuzzy knowledge-based control as a complement to mathematical
knowledge in dealing with systems whose dynamics are not so well understood and
whose models can not be so conveniently established [10,18]. However, pure fuzzy
logic based systems generally suffer from the increasing number of rules, ie. the
curse of dimensionality, while also being unable to generally guarantee closed-loop
stability. A hybrid combination of the VSC methodology, fuzzy logic, and adaptive
control may therefore provide an attractive ground for designing robust control
systems with high degrees of nonlinearities and uncertainties [6, 14].

In following the above analysis, recent research has proposed various adaptive
fuzzy sliding mode control (AFSMC) strategies such as in [3,4,5,7,15,17].
Specifically, [17] proposed an adaptive fuzzy sliding mode for a class of non-affine
nonlinear systems with relative degree equal to the system’s degree. A new scheme
of adaptive fuzzy sliding mode control, which incorporates adaptive model tracking
with sliding mode and fuzzy systems, has been investigated in [4]. In [15] a new
design of an adaptive fuzzy sliding mode controller for linear systems with
mismatched time varying uncertainties has been presented. In [3], fuzzy systems as
universal approximators and SMC have been used to control a class of nonlinear
systems. An adaptive law has been introduced that is robust to approximation error
to improve the approximation accuracy. An indirect adaptive control strategy by
using a PI control term, which approximated the switching control to minimize the
amount of chattering, has been devised in [7]. In [5] an adaptive fuzzy sliding mode
control for robotic manipulators with asymptotic stability has been established.
Finally, the authors in [12] have proposed an indirect adaptive fuzzy controller for a
class of nonlinear uncertain systems with bounded disturbances. However, while
adequately addressing several of the issues in control of complex systems, the above
approaches are common in their requiring of a known bound for system
uncertainties. In other words, their results may no longer be held if the bound
assumptions on system uncertainties are violated.

In contrast, we here propose a novel approach to direct adaptive fuzzy PI sliding
mode control for a class of uncertain nonlinear systems with disturbances that are
bounded but where these bounds are not known. The proposed direct adaptive PI
structure attenuates chattering as well as guaranteeing asymptotic stability. The
method has a general algorithm as previously reported in [1]; here we provide a
more detailed description and extend the simulation by adding more
comparisons/analysis. Although our earlier algorithm in [12] was able to control a
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more general class of nonlinear uncertain systems than the one in this paper, it
required that the bound of disturbances be known in advance. Therefore, compared
with the other existing approaches of handling external disturbances, the proposed
approach has the advantage that it only requires a bound to exist, while the
magnitude of this bound does not need to be known. One may argue that
an alternative solution to this problem is to assume a larger bound that would
be sufficiently large. However, such a large bound would also result in larger
chattering.

This paper is organized as follows. Section 2 formulates the class of nonlinear
systems under consideration here, and describes the assumptions based on the
theory of SMC, fuzzy logic systems and universal approximation theorem. In
Section 3, the proposed direct adaptive fuzzy PI sliding mode control approach is
presented. To show the effectiveness of the proposed method, in section 4, it is
applied to two nonlinear systems — an open-loop unstable nonlinear system and a
chaotic Duffing forced-oscillation stabilization amid significant uncertainties.
Simulation results indicate the supetiority of the approach in presence of
disturbances.

2. Problem Formulation, Sliding Mode Control and Fuzzy Systems

2.1. Problem Formulation. Consider a class of SISO #-th order nonlinear systems
in the following form,

x(M = £(X,t)+bu(t) +d(X,t)
V=X M

Where f is an unknown bounded nonlinear function, X' :[X,)'(,n-,x(”_l)]

=[X, %y, X,] € R"is the state vector of the system which is assumed to be
available for measurement, Ue R and yeR are respectively the input and the
output of the system and d(X,t) is an unknown, bounded external disturbance, but
the bound is unknown.. Without loss of generality, b is assumed to be an unknown

positive constant; since if D is negative, the control law can be detived similatly. In
other words we have following assumptions.

Assumption 2.1. The external disturbance d(X,t) is bounded by a constantD , i.e.,
d(X,t)|<D. @

Remark 2.1. In comparison with other approaches to handling external distur-
bances, the proposed approach only requires that a bound D exist, but its magnitude
does not need to be known.
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The control objective is to design U such that the state of the system X follows the
desired state X4 in presence of uncertainties and disturbances, that is the tracking

error
E=X-Xy4=[e,6-e] 3)
should converge to zero.

Assumption 2.2. The desired trajectory vector X4 is a known continuous and

bounded function as below,
IXq]<c. 4

2.2. Sliding Mode Control. The SMC control problem can be consequently stated
as follows. For system (1) define a sliding surface by the following scalar function

s=e™Y 4¢P 4. ycé+ce. )

This is a time-varying surface in the state space R". If the coefficients ¢,i=1-+n-1

are chosen such that the polynomial A e A2 o4 cpA+c is Hurwitz, the
differential equation S(E)=0 with the initial condition E(0)=0.has the unique
solution E(t) =0. Therefore the objective becomes to design a control law that
forces the state trajectory to a sliding surface s(E) =s(X,t) =0 in finite time and to

remain on this surface. For achieving this objective the control law must be chosen
such that

iis2 <7

2 dt
of,
$$ < 19| ©)
where 77, 1s a positive constant and,
n-1
s':Zcie<‘>+f(x,t)+bu(t)—x§,“)+d(x,t). 0

i=1

Therefore,

n-1
O cie® + (X, 1) +bu(t) = x{” +d(X,1)) < =r7,,[s] . ®)
i=1
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Solving the above inequality for u(t) and using Assumption 2, we have the

input u"(t) as follows

n-1
u'(t) = %{—Z cie®™ — F (X +x{™M —d(X,t) -7, sgn(s)}
i=1

*

= u;q —Usy (9)

*

*
eq» Usw are defined

where, 77, 27y, , and guarantees the sliding condition (6), where u

as follows:

Ug (1) = i{ nz_zlcie“) — F(X, )+ x{M —d(X ,t)}
=0 (10

. n
Ug, (t) = Tbsgn( s) (11)
and sgn(.) is the sign function.

However, f(X,t), d(X,t) and b are generally unknown and cannot be used for

constructing the control law (9). Furthermore, the chattering due to the switching
function can invoke undesirable dynamics.

Here, we attend to the above challenges by proposing a hybrid direct adaptive fuzzy
sliding mode and an adaptive PI structure. The following section outlines the basic
characteristics of fuzzy systems that are used in this approach.

2.3. Fuzzy Logic Systems and Universal Approximation Theorem. The
fuzzy logic systems (FLS) detailed in [20] are briefly reviewed below for continuity

of discussion. FLS perform a mapping from U; xU, x---xU; =U cR" to VcR. A

fuzzy system consists of a fuzzifier, fuzzy rule base, fuzzy inference engine and
defuzzifier. The fuzzy rule base consists of a collection of canonical fuzzy If-Then
rules such as,

RO :ifx, is F' and---andx_ is F| theny is G' I=1-M (12

where X =[%,%,,-,X,]" €U and yeV are respectively the input and output of
the fuzzy system, M is the total number of rules; and F! and G'are fuzzy sets in
U; and V, respectively. The fuzzy inference engine performs a mapping from fuzzy
sets in U to fuzzy sets in V, based on the fuzzy rule base. Furthermore, the
fuzzifier maps a crisp point X :[Xl,X2,~--,Xn]T €U to a fuzzy set in U and the
defuzzifier maps fuzzy sets in V to a crisp pointinV .
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Using the singleton fuzzifier, a product inference engine and a center average
defuzzifier, the output of fuzzy system can be expressed as,

M n
DT T #er i)
i=1

1=1

— T
=R =0"£(X)

> (T #epxin (13

1

where, 6=[V",y%,--,y" ] is the center of the output fuzzy membership functions
and is also the adjustable parameter vector, and &(X) =[&(X),&,(X),-++,En X" is

the vector of fuzzy basis functions defined as below,

Hﬂplj(xi)
EX)y=""=—————— j=1- M (14)

n

M
> (T #e i)

R
We have the following theorem:

Theorem 2.1. [20] For any given real continuous function g on the compact set

U < R" and arbitrary s >0, there exists a fuzzy system f " (X) =6 £(X) of the form
(13) such that

sup|f“(X)—g(X) < e. (15)
XeU

The above theorem states that the fuzzy systems of the form (13) can approximate
any real continuous function to any degree of accuracy. This means the fuzzy
systems of the form (13) have the universal approximation property reported
earlier in [20].

3. The Proposed Control Law

The SMC-based controller in Section 2.2 has two terms as mentioned in (10) and
(11). Since the nonlinear functions f(X,t)andd(X,t) ate not known in (10), we use

the fuzzy system,
(e (X 16;) = 6] £(X) (16)

with free parameter 6, to approximate (10). Furthermore, to attenuate chattering,
when the state is within the boundary layer |S|<(p (@ 1s the thickness of the
boundary layer), a PI-type controller,
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GSW(S|¢92)=92TV/(S)=Kps+K,Isdt 17

with w' (s) =[S,IS dt], and HZT =[Kp, K,] is used instead of switching control (11).
The control action is kept at the saturated value 7 when the state is outside the

boundary layer, i.e. |l]SW(S|6’2)|277(77is a control parameter) When|s|>(0. We

propose a controller in the following form:

U(X|9)=Geq(X|91)—GSW(S|92). (18)

Consequently, u;q and Ug, as mentioned in (10) and (11) are the ideal for Ugq and

Ugy , respectively. They can be expressed by the following equations,

Ugg (t):%{—icie‘” - (X, 1)+ x{V —d(X,t))}

(19)
Ugy (1) = %bsgn(S) (20)
Thus, the desired control can be written as,
U7 (€) = Ueg (O) ~ Usu (1) - ey
The optimal 6, and €, are defined as follows,
0, =arg minM{sup Ueq (X |6;) — g }
0,eRM| x cRrn (22)
6, = arg aTein[ss‘ﬁ U (516,) —ugy } : 23
and the minimum approximation error of the fuzzy system can be obtained as
0 =0, (X 16) = ug (1) )

Therefore we have the following theorem :

Theorem 3.1. Consider the nonlinear system (1) and control law (18). The closed-loop
system signals are bounded and the tracking error converges to zero asymptotically if
the following adaptation laws hold:

6, =7,85(X) 23)
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6, = 7,5%/(9). 6)

Proof. Consider the Lyapunov function candidate:
1 2 b T A b T A
V==s"+—066+—0,0
> 27, 101 27, 2 U2 27)

where, 51 =6,-6;, 52 =0,-0, and 1y, y, are positive constant. The time
derivative of (27) along (1) and using (7) leads to

V = ss +L§1T 6, + Lé;éz
71 V2

n-1
s cie™ + (X, t)+bu (1) - x{" +d(X,1)+ ylelTa’l + %@Téz
i=1 1 2

= s(nzi1 cie® + (X, t)+bu(t)—b(ug (t)+ U, (X [6,))+b(ug (t)+0., (X [6,))

i=1
—xé”)+d(X,t))+£§1T91+£0~;92. (28)
71 2
Using (18), (19) and (24) we have

v = Sb(aeq (x |91) - l','I\eq (X |91*)) + Sb(l',jeq (X |91*) - u:q (t))

+sb(d,, (5165) ~ U, (516,)) b, (5165) + 776, + 28],
1 72
=sh0,TE(X) - b8, w(s) + sbw—sbﬁsw(s|0;)+£§1T91 +35;.9'2.
1 2

It should be noted that since ug,(s|6,) lies in the first and third quadrant,
Ug,(5165)=0, for s=0, and sSug(s|#)=0 for all s. Therefore,
S Usw (5167) =8l |ugu (s165)} 50

. ~ 1 . ~ 1 . .
V =bo, (sE(X)+ 7—91) +b0;) (-sy(s)+ 7—92) +b(sw - |s||ug, (s 02)|)
1 2

<8 (SE(X)+6,)+bd] (—sp (s) + yie'z) +b(sw - 7s|). 29)

1 2

Using the adaptation laws (25) and (26) in (29) and recalling that b is positive we
have

v Sb(sa)—n|s|). (30)
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From the universal approximation theorem, it can be expected that the term S will
be very small so

V <0. (31)

From (31) it can be seen that S,6;,6,are bounded. Furthermore, by Assumption 2.2
the signal Xy is bounded, so the system states X will be bounded. In order to

prove thattlim|e(t)| =0,it is necessary to show  that t|im|s(t)| =0. Assuming
—0 —0
|S| <7, then (30) can be written as
V < bls||o|-bnls| < brg|e|-bnls|. 32
Integrating both sides of (32), we have

t 1 [
[[s)ldr < UORIOR ’77[0|a>|dr . (33)

If wely, then from (33) we have sel,. It can be seen that all the terms in the

right-hand side of (7) are bounded, so $e€L,. Using the Barbalat lemma [13], we

have lim [s(t)|= 0, thus lim |e(t)|=0. d
tow t—wo

The algorithm of the proposed method is depicted in Figure 1.

Xd
X + \
x™ = £ (X,t)+bu(t) +d(X,t)
E
u®) =6 &(X)£n
91
'9.12* 15&(X) B(1)
6
\ 4
u(®) =6/ &(X) -3 (s) u® =7 EX) +n | u) =g EX)-0lw(s) |u®) =T ex)-n
4 6'1 =-s&(X) 91 =-78¢(X) 91 =-718¢(X)
0, b, =7550/(s)
-0 : ? s
—»02(0) 92 =7,5¥(s) P $=0

(@) (b)

FIGURE 1. The overall scheme of the proposed method (a) Block diagram (b)
Boundary layer representation
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4. Simulation Examples

In this section the proposed controller is applied to two nonlinear systems. In
the first example a first order uncertain nonlinear system is considered. In the
second example the Duffing forced-oscillation system is used.

Example 4.1. Consider a first order nonlinear system as follows

1-e7¥
X

X= +u(t) +d(t) (34

where u(t) is the control signal and d(t) is a bounded disturbance, in which the
bound is also unknown. Without loss of generality we use, d(t) =5+sin(3t). The
desired trajectory is X4 =sin(t), x(0)=1.5 and s=e. Two cases are considered: the
first uses the conventional SMC proposed in [13] and the second uses the method

proposed in this paper.

Case 1 (Conventional SMC): By [13], if we write f(X) = f(x)+ Af(x) the

conventional SMC method needs to know f(x) and the upper bound of Af(X).

—X

For system (34), if f(x) =1, Af(X) = —21 € — > and so, |Af (X)| < F =2. Therefore,
+€
from [13], the conventional SMC can be written as:
u() =~ ()~ (7 + F)sgn(s) (35)

where 77 is a positive constant as a control parameter. Here, we choose 7 =0.1.
First, it is assumed that there is no external disturbance, ze. d(t) =0. Figure 2

represents the results.

From Figure 2, the desirable tracking is achieved at the expense of high frequency
oscillation (chattering). Now assume an external disturbance (d(t) =5+sin(3t)) at

t=10° that had not been eatlier accounted for in the control law. The results are
depicted in Figure 3. It can be seen from Figure 3 that the conventional SMC is not
only fragile with respect to such unknown external disturbances, but also suffers
from significant chattering which is a harmful phenomenon in practical applications.
One may suggest that this problem can be overcome by assuming a larger bound on
the uncertainty Af (x) in the design of control law, however one should consider the
following two points. First, external disturbances are not always predictable in real
systems, and second, the assumption of a larger bound for uncertainties, even
though it may help guarantee stability, is always at a significant cost of deteriorating
performance by increasing chattering. The proposed method, as shown in the
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following set of simulations, is significant since it does not require a bound on these
uncertainties to be known, and therefore builds robustness against such unknown
disturbances.

(a)State
o
L

[b)-Contral

(&)-Error

y . L L L L
u] 2 4 ] g 10 12 14 16 18 20
Seconds

FIGURE 2. Conventional SMC without any external disturbance (a) Desired output
(dashed), actual state (Solid) (b) Control input (c) Error signal

(&) State

(b)-Control

(c)-Errar

2 4 B =] 1;] 12 14 16 18 20
Seconds
FIGURE 3. Conventional SMC with external disturbance (a) Desired output
(dashed), actual state (solid) (b) Control input (c) Error signal

Case 2 (Proposed method): In this case, we utilize the proposed method
for controlling the wuncertain nonlinear system (34). The parameters
n =0.01, =100, y, =800 and ¢ =0.5 are chosen. Kp(0) =800, K,(0)=900 are
selected. All the parameters are chosen to achieve the best transient control
performance considering the requirement of stability and possible operating
conditions. The universe [-3,3] is partitioned into the following six fuzzy input
membership functions:
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1
" Lrexp(5(x+2))
Hnz =exp(—(x +1.5)%)
fin = exp(-(x+0.5)%)
tp1 = EXp(—(x - 0.5)%)

Hpy = EXP(—(x —1.5)%)
1

HN3

(36)

Hp3

T1+ exp(=5(x — 2))

as shown in Figure 4.

[ER=R 3

08

07+

[ER=h

05k

0.4+

03+

02r

01F

FIGURE 4. Membership functions defined in universe [-3,3], from left to right
Hng Hno By Hpr, Hpy Hps-

The initial fuzzy parameters are chosen randomly in the interval [0,1] and at first it is
assumed that initially there is no external disturbance, ze. d(t)=0. Figures 5 and 6
represent the results.

It can be seen from Figures 5 and 6 that perfect tracking is achieved while chattering
is not observed.
Now assume a sudden external disturbance (d(t)=5+sin(3t)) occurs at

t=10°. The results are depicted in Figures 7 and 8. Simulation results show the
effectiveness of the proposed method to cope with uncertainty, disturbances and
chattering .
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(a)}State

(b)-Control input
o o
L

(c)-Error

L
o 2 4 6 &) 10 12 14 16 18 20
Seconds

FIGURE 5. Proposed method without external disturbance (a) Desired output
(dashed), actual state (solid) (b) Control input (c) Error signal

1050 T T T T T T T T
1000 [/_ =
950 B

a00 -

Kp

500 L L L L L L L L L
o

920

915 -
910 B

900 -

505 L L L L L L L L L

(a)yState

(b)-Control input
L]
L

(c}Emor

L
ul 2 4 6 =] 10 12 14 16 18 20
Seconds

FIGURE 7. Proposed method with external disturbance (a) Desired output (dashed),
actual state (solid) (b) Control input (c) Error signal
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1050 T
1000 [/
950

s00

Kp

850

500
a

920

915

910

=

905

900 -

895 L L L L L L L L L

u] 2 4 [ 8 10 12 14 16 18 20

Seconds

FIGURE 8. Variation of Kp and K, with respect to time

Example 4.2. Consider the Duffing forced-oscillation system in the form of

X =X,

Xy =—0.1x, — X2 +12cos(t) +u(t) +d(t) (37)
where u(t) is the control signal and d(t)=4+sin(4t)is an unknown bounded

disturbance, and the bound is also unknown. The desired trajectory is X4 =sin(t),
the initial condition is [2,2]T and s =€+ 2e. Again, as in example 4.1, two cases are

considered :

Case 1 (Conventional SMC method): From [13], if we write f(X)= fA(X) + Af (X)
the conventional SMC method needs to know fA(X) and the upper bound of Af (X).
For system (37), it can be determined if fA(X) =-0.1x, —Xf and Af (x) =12cos(t),

then, |Af (x)| < F =12. Therefore, from [13], the conventional SMC can be written as

(35). We choose n=0.1, As in the previous example, at first we assume that there
are no external disturbances, ze, d(t)=0. Figure 9 represents the results. From

Figure 9, the perfect tracking is achieved at the expense of high frequency oscillation
(chattering). Now, assume a sudden external disturbance (d(t) =4+sin(4t)) occurs

at t=20°. The results are depicted in Figure 10. It can be seen from Figure 10 that
the conventional SMC is not only fragile when external disturbances exceeds its
assumed bounds, but also suffers from chattering which is a harmful phenomenon
in practical applications.
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(a)State

(b)-Contral

[c)-Error

L
o =) 10 156 20 25 30 35 40 45 50
Seconds

FIGURE 9. Conventional SMC without any axternal disturbance (a) Desired output
(dashed), actual state (solid) (b) Control input (c) Error signal

() State

{b)-Cantrol

(c)-Error

L
a a 10 145 20 25 30 35 40 46 a0
Seconds

FIGURE 10. Conventional SMC with external disturbance (a) Desired output
(dashed), actual state (solid) (b) Control input (c) Error signal

Case 2 (Our method): In this case, we utilize the proposed method for
controlling the uncertain nonlinear Duffing-forced system (37). The patameters
n=0.01 y, =10,y, =100, =1,K(0) =10, K, (0)=80 are sclected to achieve the
best transient control performance consideting the requirement of stability and
possible operating conditions. The universe [-3,3] is partitioned into six fuzzy input
memberships as in (36). The initial condition of fuzzy parameters are chosen
randomly in the interval [0,1]. At first it is assumed there is no external disturbance,
Ze, d(t)=0. Figures 11 and 12 represent the results. It can be seen from Figures 11
and 12 that tracking is achieved and chattering is not observed. Now, assume a
sudden external disturbance (d(t) =4+sin(4t)) occurs at t=20°. The results are
depicted in Figures 13 and 14. From the simulation results it can be seen that the
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proposed controller not only controls the system amid uncertainty and external
disturbances, but it also copes well with chattering.

=
T
L

(a)-State

(b)-Contral input
o
G %
!

(c)-Ermar

L
a =1 10 15 20 25 30 35 40 45 a0
Seconds

FIGURE 11. Proposed method without external disturbance (a) Desired output
(dashed), actual state (solid) (b) Control input (c) Error signal

1500
1000 (/‘_ A
=
=z
500 ~
a L
a =1 10 15 20 25 30 35 40 45 a0
s00
400 ~
300 —
=
200 —
100 E
a L L L L L L L L L
a =1 10 15 20 25 30 35 40 45 a0

Seconds

FIGURE 12. Variation of Kp and K, with respect to time

(a)-State

(b)-Control input
o
D g
L

(c)}Ermor

L
a 5 1o 15 20 25 =0 5 40 45 0
Seconds

FIGURE 13. Proposed method with external disturbance (a) Desired output
(dashed), actual state (solid) (b) Control input (c) Error signal
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1500

1000 f B

500 B

Kp

Ki

i) L L L L L L L L L
u] 5] 10 15 20 25 30 35 40 45 50

Seconds

FIGURE 14. Variation of Kp and K, with respect to time
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Finally Figure 15 shows the states in phase plane for four different initial conditions.

FIGURE 15. Phase-plane representation for different initial conditions:

@ x(@)=[22]" (b) x(0)=[-22]" (¢) x(0)=[-2-5]" (d) x(0)=[3-4]".
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5. Discussion and Conclusion

In this paper, a direct adaptive fuzzy sliding mode controller for a class of
nonlinear uncertain systems is investigated. The proposed method is robust in the
presence of uncertainties and bounded external disturbances. Comparing the
proposed method with the other existing approaches, there is an important
difference when external disturbances are assumed. Here, the value of a bound does
not need to be known, i.e. knowing that it exists is sufficient to prove asymptotic
stability of the closed loop system. For attenuating the chattering problem, the
control law was furthermore designed with an adaptive PI term. In future work, we
aim to extend this methodology to more general forms of nonlinear systems. We
also aim to propose a methodology for auto tuning the adaptive gains.
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