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Abstract

In this paper, a new approach is presented based on relay autotuning of a plant to find parameters for its control using a Smith predictor.
A Smith predictor configuration is represented as its equivalent internal model controller (IMC) which provides the parameters of the
proportional-integral (PI) or proportional-integral-derivative (PID) controller to be defined in terms of the desired closed-loop time constant,
which can be adjusted by the operator, and the parameters of the process model. This means that only one parameter, namely the desired
closed-loop time constant, is left for tuning, assuming that the model parameters have been obtained from a relay autotuning. The ISE criterion
was used to find the filter parameter, and simple equations were obtained to tune the Smith predictor. The method is very simple and has given
improved results when compared with some previous approaches.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Proportional-integral-derivative (PID) controllers are still
widely used in industrial systems despite the significant de-
velopments of recent years in control theory and technology.
This is because they perform well for a wide class of pro-
cesses. Also, they give robust performance for a wide range
of operating conditions. Furthermore, they are easy to im-
plement using analogue or digital hardware and familiar to
engineers.

However, plants with long time-delays can often not
be controlled effectively using a simple PID controller.
The main reason for this is that the additional phase lag
contributed by the time-delay tends to destabilise the
closed-loop system. The stability problem can be solved
by decreasing the controller gain. However, in this case the
response obtained is very sluggish.

The Smith predictor, shown inFig. 1, is well known as an
effective dead-time compensator for a stable process with
long time-delays (Smith, 1959). The performance of the
Smith predictor control strategy is affected by the accuracy
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with which the model represents the plant. Based on the as-
sumption that the model used matches perfectly the plant
dynamics, the closed-loop transfer function is given by

T(s) = Gc(s)Gm(s)e−Lms

1 + Gc(s)Gm(s)
. (1)

According toEq. (1), the parameters of the primary con-
troller, Gc(s), which is typically taken as PI or PID, may be
determined using a model of the delay free part of the plant.

Many possible approaches for determining or tuning the
parameters of an appropriate controller,Gc(s), have been
given in the literature and some recent contributions include
references (Åström, Hang, & Lim, 1994; Hägglund, 1992;
Kaya & Atherton, 1999; Watanabe & Ito, 1981). However,
only a few investigations have been carried out on autotuning
of the Smith predictor, which recently include (Benouarets &
Atherton, 1994; Hang, Wang, & Cao, 1995; Palmor & Blan,
1994). In Benouarets and Atherton (1994), the relay autotun-
ing of Åström and Hägglund (1984)for simple single input
single output systems was extended to Smith predictors. In
Palmor and Blan (1994)andHang et al. (1995), a first-order
plus dead time (FOPDT) or second-order plus dead time
(SOPDT) transfer function model is first found from relay
autotuning based on approximate describing function (DF)
analysis, then the controller parameters are calculated using
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Fig. 1. The Smith predictor control scheme.

parameters of the obtained model. However, all have their
own shortcomings. For example, the method proposed by
Benouarets and Atherton (1994)is not applicable when the
process can be modelled by the FOPDT model, in the case
of a perfect matching, as a limit cycle cannot be obtained.
Also, the method proposed results in high controller gains,
which may cause the saturation problem in practice and
makes the method very sensitive to modelling errors. Meth-
ods proposed byHang et al. (1995)and Palmor and Blan
(1994)may result in very poor model parameters estimates,
especially for processes with small time constants and large
time delays, as the approximate DF analysis is used. Also,
for the method ofHang et al. (1995), first a relay test has
to be performed to use the limit cycle frequency and am-
plitude for calculating initial PI controller parameters and
then putting this PI controller into the closed-loop to find
the process steady-state gain so that the all three unknown
parameters of the FOPDT or SOPDT model transfer func-
tion can be found, which is a time taking process, especially
for processes with large time constants. For the method of
Palmor and Blan (1994)two relay tests have to be performed
to calculate the all three parameters of the FOPDT model,
which is again a time taking process.

In this paper, a new approach is presented based on auto-
tuning to find the controller parameters for a Smith predic-
tor. A single relay feedback test is performed on the plant
and the frequency and amplitude of the resulting limit cycle
are measured. Then the A-Locus method, an exact method
for giving the parameters of a limit cycle, is used to esti-
mate the parameters of the process model, assumed to be
either a FOPDT or SOPDT transfer function. However, the
details of the parameter estimation is not given here and
interested readers may refer toKaya (1999)andKaya and
Atherton (2001). Once the model of the process is found,
the parameters of the controller, usually a PI or PID, are
found to complete the design. Tuning parameters are found
by representing the Smith predictor as its equivalent internal
model controller (IMC) (Morari & Zafiriou, 1989; Rivera,
Morari, & Sigurd, 1986), which provides the parameters of
the PI or PID controller to be defined in terms of the de-
sired closed-loop time constant, which can be adjusted by
the operator, and the parameters of the process model.

The method has the advantage when compared with the
methods ofHang et al. (1995)andPalmor and Blan (1994),

of requiring less time for model parameter estimation, since
only a single relay feedback test is performed for the pro-
posed method, while for the formers a step or a second relay
test have to be performed. Also more accurate parameter es-
timations can be achieved since an exact limit cycle inves-
tigation method is used. Also, the proposed method is the
most robust to modelling errors amongst the three as will be
shown later by examples.

2. Internal model control (IMC)

A control system design is expected to provide a fast and
accurate set-point tracking, that is, the output of the system
should follow the input signal as close as possible. Also,
any external disturbances must be corrected by the control
system as efficiently as possible. The first requirement can
be achieved by an open loop control system. With an open
loop control scheme, the stability of the system is guaranteed
provided that both the plant and controller transfer functions
are stable. Also, the design of the controller in an open loop
control scheme may simply be chosen asGc(s) = G−1(s),
where Gc(s) and G(s) are respectively the controller and
plant transfer functions. The drawback of an open loop con-
trol system is the sensitivity to modelling errors and inabil-
ity to deal with external disturbances entering the system. In
this case, a closed-loop system can be used to deal with dis-
turbances and modelling errors. Based on these discussions,
Rivera et al. (1986)proposed the control structure given in
Fig. 2.

This control structure is referred to as IMC since the plant
model,G̃ appears in the control structure. Here,G and G̃
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Fig. 2. IMC control strategy.
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are the actual process and process model transfer functions
respectively. WhenG = G̃, that is perfect modelling, and
d = 0, the system is basically open loop. This provides the
open loop advantages. WhenG �= G̃ or d �= 0 the system is
a closed-loop system. Thus, the IMC control strategy has the
advantages of both the open loop and closed-loop structures.

From the block diagram of the IMC structure shown in
Fig. 2, the closed-loop transfer is given by

Tr(s) = G(s)GIMC(s)

1 + [G(s) − G̃(s)]GIMC(s)
(2)

The disturbance transfer function of the IMC structure is

Td(s) = 1 − G̃(s)GIMC(s)

1 + [G(s) − G̃(s)]GIMC(s)
(3)

Some important properties of the IMC system (Morari &
Zafiriou, 1989) are discussed below.

Property 1 (Dual stability). Assume that the model and
plant dynamics match perfectly, G(s) = G̃(s). Then the sta-
bility of both the plant and controller is sufficient for the
stability of the overall closed-loop system.

Proof. From Fig. 2, the output of the system, assuming
G(s) = G̃(s), is given by

C(s) = G(s)GIMC(s)[R(s) − D(s)] + D(s)

Thus for stableG(s) andGIMC(s), the dosed loop system is
stable. �

Property 2 (Perfect controller).Assume that the IMC
controller is designed to be given by the model inverse,
GIMC(s) = G̃(s)−1 and that the closed-loop IMC system is
stable. Then, the perfect reference tracking, C(s) = R(s),
can be achieved for all timet > 0 despite any disturbance
D(s).

Proof. For GIMC(s) = G̃(s)−1, the closed-loop and distur-
bance transfer functions, fromEqs. (2) and (3), are respec-
tively given by Tr(s) = 1 andTd(s) = 0. This means perfect
reference tracking and complete disturbance rejection can
be achieved. �

However, the perfect controller property is of theoretical
interest only. It is known that withGIMC(s) = G̃(s)−1 mod-
elling errors may lead to an unstable system. Moreover, the
perfect controller given by Property 2 cannot be realised
for several reasons (Morari & Zafiriou, 1989; Rivera et al.,
1986).

Thus, the first step in the IMC controller design is to factor
the process model

G̃(s) = G̃+(s)G̃−(s) (4)

whereG̃+ contains all the time delays and right-half plane
zeros. The second step is to define the IMC controller as

GIMC(s) = G̃−1
− (s)F(s) (5)

whereF(s) is a low pass filter with a steady state gain of one.
The filter is introduced for physical realisability of the IMC
controller, GIMC(s). The simplest filter has the following
form (Morari & Zafiriou, 1989; Rivera et al., 1986)

F(s) = 1

(λs + 1)n
. (6)

SubstitutingEq. (5) into Eqs. (2) and (3)gives

Tr(s) = G(s)F(s)

G̃−(s) + [G(s) − G̃(s)]F(s)
(7)

and

Td(s) = G̃−(s)[1 − F(s)]

G̃−(s) + [G(s) − G̃(s)]F(s)
(8)

For perfect modelling,G(s) = G̃(s), and non-minimum
phase systems,̃G−(s) = G̃(s), Eqs. (7) and (8)can be fur-
ther simplified to give

Tr(s) = F(s) (9)

and

Td(s) = 1 − F(s) (10)

Eqs. (9) and (10)clearly show that the performance of
a closed-loop system designed based on the IMC design
method is determined solely by the filter dynamics. For a fil-
ter with the form given byEq. (6)and fort → ∞, Eqs. (9)
and (10)give Tr(s) → 1 andTd(s) → 0.

It is shown (Rivera et al., 1986) that the IMC controller
design method leads to PID controllers for many of the plant
transfer function models used in industrial practice. In the
next section, the IMC design method is used to design PID
controllers in a Smith predictor configuration.

3. IMC representation of a smith predictor

The closed-loop transfer function of a Smith predictor,
assuming a perfect matching, is given (seeFig. 1andEq. (1))
by

TSmith(s) = Gc(s)Gm(s)e−Lms

1 + Gc(s)Gm(s)
. (11)

The closed-loop transfer function of the IMC design, assum-
ing a perfect matching andd = 0, is given by

TIMC(s) = GIMC(s)G(s) (12)

which can be rearranged as

TIMC(s) = GIMC(s)Gm(s)e−Ls (13)

whereGm(s) is the delay free part of the model transfer func-
tion. To have the same output for the both configurations, it
is straightforward to illustrate, by comparingEqs. (11) and
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Fig. 3. IMC representation of a Smith predictor.

(13), that the IMC controller,GIMC(s), is related to the clas-
sic controller,Gc(s), through the transformation

GIMC(s) = Gc(s)

1 + Gc(s)Gm(s)
(14)

or

Gc(s) = GIMC(s)

1 − GIMC(s)Gm(s)
(15)

Therefore, fromEq. (14), a Smith predictor structure can be
put into the IMC structure as shown inFig. 3.

To find the tuning parameters for the controllerGc(s) in
Fig. 3, first a FOPDT transfer function is considered. In
order to obtain the IMC controller, the process model,G̃ =
Kme−Lms/(Tms + 1), must be factored as inEq. (4). If a
first-order Taylor series expansion is used for the time-delay
approximation, then the following equations are obtained

G̃+(s) = (1 − Ls) (16)

G̃−(s) = Km

Tms + 1
(17)

The IMC controller can be obtained fromEq. (5), assuming
a filter with n = 1, as

GIMC(s) = Tms + 1

Km(λs + 1)
(18)

Eq. (18)shows that, once the parameters of the model,Km
and Tm, are known, then only the filter parameter,λ, re-
mains to be selected. The classic controller,Gc, can then be
obtained usingEq. (15)to give

Gc = Tms + 1

Kmλs
(19)

Eq. (19)can be rearranged as an ideal PI controller, which
has the following controller parameters

Kp = Tm

Kmλ
(20)

and

Ti = Tm (21)

The only unknown in the last two equations is the filter
time constant,λ, since it is assumed that the plant transfer
function model is obtained using the relay feedback method
given inKaya (1999)andKaya and Atherton (2001). Thus,
if a proper value ofλ is achieved, then the design procedure

will be completed. Here, the Integral Squared Error, ISE,
criterion, which is given by

JISE =
∫ ∞

0
[r − c(t)]2 dt (22)

is used to find an optimal solution for the filter parameter,
λ. The Laplace form of the output signal,C(s), in the Smith
predictor configuration can be obtained fromFig. 1,

C(s)

R(s)
= GcGm

1 + GcGm
e−Ls (23)

assuming a perfect matching between the process and model.
Substituting the proper values forGc(s) given byEq. (19)
andGm(s) = Km/(Tms + 1) into Eq. (23)and assuming a
unit step change into the system gives

C(s) = 1

s(λs + 1)
e−Lms (24)

The time domain solution is obtained by assuming a
first-order Taylor series expansion:

c(t) = 1 −
(

1 + Lm

λ

)
e−t/λ (25)

PuttingEqs. (22) into (25)results in

JISE = (λ + Lm)2

2λ
(26)

Taking the derivative ofEq. (26)with respect toλ, produces
λ = Lm. Finally the PI controller parameters are

Kp = Tm

KmLm
(27)

Ti = Tm (28)

Processes with SOPDT transfer functions are also very com-
mon. This is why a similar result to that for the FOPDT
transfer function is also derived for the SOPDT transfer func-
tion. Following the same procedure as for the FOPDT trans-
fer function and assuming̃G(s) = Kme−Lms/(T1ms + 1)

(T2ms + 1), it can easily be shown that the classical con-
troller can now be implemented as a PID controller with the
following parameters

Kp = T1m + T2m

KmLm
(29)

Ti = T1m + T2m (30)

Td = T1mT2m

T1m + T2m
(31)

With the calculated filter time constant, that isλ = Lm,
the closed-loop response of the system may be slow for
processes with large time delays and small time constant and
steady state gain since this results in a small controller gain
from Eq. (27)for the PI andEq. (29)for the PID controller.
This, however, gives a larger margin for the closed-loop
system to be unstable as shown in the next section.
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Fig. 4. Block diagram for autotuning of the Smith predictor.

In order to obtain a faster closed-loop response in the case
of small ratios ofTm/KmLm for the PI and (T1m+T2m)/KmLm
for the PID controller gains, a constant 0.2 < α < 1 can be
introduced into these expressions. In this case, the controller
gain for the PI controller is given by

Kp = Tm

αKmLm
(32)

and for the PID controller is

Kp = T1m + T2m

αKmLm
(33)

3.1. Autotuning procedure

The block diagram for autotuning of the Smith predictor
configuration is shown inFig. 4. The autotuning procedure
to find controller parameters can be carried out as follows:

• When the controller needs to be tuned, switch from the
controller mode to relay mode. At the same time, open
the switch “S” so that the original relay feedback config-
uration is obtained.

• Measure the limit cycle parameters and estimate parame-
ters for the FOPDT or SOPDT model plant transfer func-
tion using the relay feedback method proposed byKaya
(1999)andKaya and Atherton (2001).

• Find tuning parameters using eitherEqs. (27) and (28),
if the FOPDT model is used, orEqs. (29)–(31), if the
SOPDT model is used.

• Switch from relay mode to controller mode with calcu-
lated tuning parameters for the control of the process.

4. Robustness analysis of the performance

The robustness analysis of the proposed controller design
is done using the block diagram shown inFig. 1. The char-
acteristic equation of the system given inFig. 1 is

1 + Gc(s)Gm(s) + Gc(s)[P(s) − Pm(s)] = 0 (34)

whereP(s) = G(s)e−Ls is the actual plant transfer function
andPm(s) = Gm(s)e−Lms is the model of the plant. If the
uncertainties are given byP(s) = Pm(s) + δP(s), where

the δP(s) is the uncertainty inP(s), then Eq. (34) can be
rearranged as

1 + Gc(s)Gm(s) + Gc(s)δP(s) = 0 (35)

which then gives

|δP(s)| = |1 + Gc(s)Gm(s)|
|Gc(s)| (36)

the norm bound uncertainty region (Morari & Zafiriou,
1989) in order to maintain the closed-loop stability. Note
that this norm boundary is the same as the one obtained if
the system has no time delay in the plant transfer function.

Substituting forGm(s) = Km/(Tms + 1) andGc(s), from
Eq. (19), for the case when the plant is modelled by the
FOPDT transfer function gives

|δP(s)|FOPDT = Km
√

λ2ω2 + 1√
T 2

mω2 + 1
(37)

For low frequencies the norm bound uncertainty region
for |δP(s)|FOPDT is given by the steady state gain of
the modelKm. The magnitude of the modelling errors,
|P(jω)−Pm(jω)|, at low frequencies is given by(K−Km).
This illustrates that at low frequencies, the closed-loop
stability is only affected by the uncertainties in the steady
state gains of the plant and model. Also, it is seen that
very high modelling errors, that is 100%, in the plant and
model steady state gains are allowed for maintaining the
closed-loop stability. For high frequencies the norm bound
is given byKmλ/Tm. Thus, the larger the value of the filter
time constant the larger norm bound uncertainty region,
that is, the permission for larger modelling errors.

Similarly the norm bound uncertainty region for the case
when the plant is modelled by the SOPDT is obtained as

|δP(s)|SOPDT= Km
√

λ2ω2 + 1√
[1 − (T1mT2mω)2]2 + (T1m + T2m)2ω2

(38)

For low frequencies the norm bound uncertainty region
for |δP(s)|SOPDT is again given by the steady state gain
of the modelKm. Since the modelling errors are again
given by (K − Km), a very high value for modelling errors,
namely 100%, is allowed at low frequencies. Forω → ∞,
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|δP(s)|SOPDT → 0. Thus, this implies that the choice of
λ does not affect the stability of the closed-loop system
at high frequencies. As it is shown by an example, the
mid-frequencies are more affective on the stability of the
system, therefore it can still be expected that the larger val-
ues ofλ gives larger margins to maintain the closed-loop
system stability.

To see the effect of on the system performance,Eqs. (37)
and (38)can be rearranged by usingEqs. (32) and (33)rather
thanEqs. (27) and (29), respectively. In this case, the numer-
ator ofEqs. (37) and (38)will be given byKm

√
λ2ω2α2 + 1.

5. Illustrative examples

Several examples are given to illustrate the use of the pro-
posed design method. In the first example, a SOPDT plant
transfer function is considered to show the effect of the
choice of� on the system performance and robustness. The
second and third examples are given to compare the perfor-
mance of the proposed design method with some existing
design approaches.

Example 1. In this example, a process with SOPDT transfer
function

G(s) = e−10s

(17s + 1)(6s + 1)

whereT1m + T2m is larger thanKmLm, therefore it is ex-
pected that forα = 1 a satisfactory closed-loop response
can be obtained, is considered. Since the transfer function
fits to the SOPDT model perfectly, the parameter estimation

Fig. 5. Responses forExample 1.

method given inKaya and Atherton (1999, 2001)is used to
obtain the model transfer function accurately. Closed-loop
step responses for differentα values are shown inFig. 5. As
expected the closed-loop response of the system is satisfac-
tory for α = 1, since(T1m + T2m) > KmLm. For +10 and
−10% change in the time delay, step responses are given
in Figs. 6 and 7, respectively. Smaller values of� decrease
the robustness of the system as expected. The modelling er-
rors and norm bound uncertainty region are shown inFig. 8
which illustrates that smallerα values decrease the norm
bound uncertainty region and thus the relative stability of
the system.

Example 2. A SOPDT plant transfer function

G(s) = e−10s

(s + 1)2

is considered. The identification method given inKaya and
Atherton (1999, 2001)was used to find parameters of the
FOPDT model asG(s) = e−10.87s/(1.27s + 1) and the
SOPDT model as e−10s/(s+1)2. Using the tuning formulae
given in Section 3with α = 0.5 results inKc = 0.234 and
Ti = 1.27 for a PI controller andKc = 0.400,Ti = 2.000
and Td = 0.500 for a PID controller. The controller pa-
rameters for the method proposed byHang et al. (1995)
are Kc = 0.510 andTi = 1.780, for the method pro-
posed byPalmor and Blan (1994)are Kc = 0.956 and
Ti = 2.680 and for the method proposed byBenouarets
and Atherton (1994)are Kc = 4.703, Ti = 1.036 and
Td = 0.251. User specified value of damping ratioζ was
chosen equal to 0.7 for the method ofHang et al. (1995).
The controller proposed byBenouarets and Atherton (1994)
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Fig. 6. Responses ofExample 1for +10% change in the time delay.

was designed for a gain and phase margins of 0.6 and
60◦, respectively. Responses to a unit step input change
and disturbance with magnitude of−0.2 at t = 70s are
given in Fig. 9. Certainly, the proposed method gives the
best performance. Since, the Smith predictor controller is
sensitive to modelling errors, especially to a mismatch in
the dead time, results are also given for a+30% change
in the plant time delay inFig. 10. Again the proposed
method results in best performance. Note that the design

Fig. 7. Responses ofExample 1for −10% change in the time delay.

method ofPalmor and Blan (1994)results in an unstable re-
sponse. Also, the result for design method ofBenouarets and
Atherton (1994)is not shown as it causes an unstable re-
sponse immediately.

Example 3. A high order plant transfer function

G(s) = e−20s

(3s + 1)(2s + 1)(s + 1)(0.5s + 1)
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Fig. 8. Modelling errors ( ) for L = 11 and norm-bound uncertainty ((—)α = 1, (- - -) α = 0.7, (-· -) α = 0.5, (· · · ) α = 0.3) of Example 1.

is considered. Again, the identification method proposed in
Kaya and Atherton (1999, 2001)was used to find parame-
ters of the FOPDT model asG(s) = e−23.28s/(3.67s + 1)

and the SOPDT model as e−21.01/(2.77s + 1)2. The tuning
formulae given inSection 3was used to obtainKc = 0.315
andTi = 3.670 for a PI controller andKc = 0.527, Ti =
5.540 andTd = 1.385 for a PID controller forα = 0.5.

Fig. 9. Responses ofExample 2: (—) proposed method (the faster is for the SOPDT model and the slower is for the FOPDT model), (- - -)Hang et al.
(1995), (- · -) Palmor and Blan (1994), (· · · ) Benouarets and Atherton (1994).

The controller parameters for the design method ofHang
et al. (1995)areKc = 0.510 andTi = 4.301, for the design
method ofPalmor and Blan (1994)areKc = 0.960 andTi =
6.489 and for the design method ofBenouarets and Atherton
(1994)areKc = 1.873,Ti = 5.350 andTd = 1.340. User
specified value of damping ratioζ was again chosen equal
to 0.7 for the method ofHang et al. (1995). The controller
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Fig. 10. Responses ofExample 2for +30% change in the plant time delay: (—) proposed method (the faster is for the SOPDT model and the slower
is for the FOPDT model), (- - -)Hang et al. (1995), (- · -) Palmor and Blan (1994).

proposed byBenouarets and Atherton (1994)was designed
for the gain and phase margins of 0.6 and 45◦. Fig. 11illus-
trates responses to a unit step input change and disturbance
with magnitude of−0.2 att = 150s. The proposed design
method again gives better performance than the other de-

Fig. 11. Responses ofExample 3: (—) proposed method (the faster is for the SOPDT model and the slower is for the FOPDT model), (- - -)Hang et al.
(1995), (- · -) Palmor and Blan (1994), (· · · ) Benouarets and Atherton (1994).

sign methods.Fig. 12 shows results when+30% change
is assumed in the plant time delay. The proposed method
results in a satisfactory response while the design method
of Hang et al. (1995)andPalmor and Blan (1994)results in
a very poor response. The result for the design method of
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Fig. 12. Responses ofExample 3for +30% change in the plant time delay: (—) proposed method (the faster is for the SOPDT model and the slower
is for the FOPDT model), (- - -)Hang et al. (1995), (- · -) Palmor and Blan (1994).

Benouarets and Atherton (1994)is again not shown as it
results in an unstable response immediately.

6. Conclusions

The paper presented an autotuning method for Smith pre-
dictor controllers based on exact limit cycle analysis for
FOPDT and SOPDT plants. The Smith predictor was rep-
resented as its equivalent IMC controller and this enabled
to define the PI or PID controller parameters to be defined
in terms of the model parameters and the closed-loop time
constant,λ. Since it is assumed that the model of the plant
can be found using relay autotuning method, this meant that
only one parameter, namely the closed-loop time constant
λ, was left for tuning. The ISE criterion was used to find the
value ofλ and simple equations were obtained to tune the
Smith predictor. The method is very simple and has given
improved results when compared with some previous ap-
proaches. Also, some discussions on robustness of the pro-
posed design method have been given.

References

Åström, K. J., & Hägglund, T. (1984). Automatic tuning of simple regula-
tors with specifications on phase and amplitude margins.Automatica,
20, 645–651.

Åström, K. J., Hang, C. C., & Lim, B. C. (1994). A new Smith predictor
for controlling a process with an integrator and long dead-time.IEEE
Transaction on Automatic Control, 39(2), 343–345.

Benouarets, M., & Atherton, D. P. (1994). Autotuning design methods for
a Smith predictor control scheme. InUKACC International Conference
on Control’94 (pp. 795–800).

Hägglund, T. (1992). A predictive PI controller for processes with
long dead-time delay.IEEE Control System Magazine, 12(1), 57–
60.

Hang, C. C., Wang, Q. G., & Cao, L. S. (1995). Self-tuning Smith
predictors for processes with long dead time.International Journal of
Adaptive Control and Signal Processing, 9, 255–270.

Kaya, I. (1999).Relay feedback identification and model based controller
design. D.Phil. Thesis, University of Sussex, UK.

Kaya, I., & Atherton, D. P. (1999). A new PI-PD Smith predictor for
control of processes with long dead time. InProceedings of the 14th
IFAC World Congress IFAC’99(pp. 283–288).

Kaya, I., & Atherton, D. P. (2001). Parameter estimation from relay auto-
tuning with asymmetric limit cycle data.Journal of Process Control,
11(4), 429–439.

Morari, M., & Zafiriou, E. (1989).Robust process control. Englewood
Cliffs: Prentice-Hall.

Palmor, Z. J., & Blan, M. (1994). An auto-tuner for Smith dead time
compensator.International Journal of Control, 60(1), 117–135.

Rivera, D. E., Morari, M., & Sigurd, S. (1986). Internal model control.
PID controller design.Industrial Chemistry in Process Design and
Development, 25(1), 252–265.

Smith, O. J. (1959). A controller to overcome dead time.ISA Journal,
6(2), 28–33.

Watanabe, K., & Ito, M. (1981). A process-model control for linear
systems with delay.IEEE Transaction on Automatic Control, AC-26(6),
1261–1266.


	IMC based automatic tuning method for PID controllers in a Smith predictor configuration
	Introduction
	Internal model control (IMC)
	IMC representation of a smith predictor
	Autotuning procedure

	Robustness analysis of the performance
	Illustrative examples
	Conclusions
	References


