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Abstract

This paper analyzes the optimal timetable for a given number of public transport vehicles on a single
transit line when riders differ with respect to the times at which they prefer to travel and the schedule delay
costs they incur from traveling earlier or later than desired. The problem of minimizing riders’ total
schedule delay costs is formulated in continuous time and first-order optimality conditions are identified.
An explicit solution is derived for the “line”” model in which preferred travel times are uniformly distributed
in the population over part of the day and trips cannot be rescheduled between days. This solution is
compared with the optimal schedule for the “circle” model in which preferred travel times are uniformly
distributed over the full 24 h day and trips can be rescheduled between days. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

This paper is about trip timing by users of public transportation and how a schedule or
timetable for transit vehicles should be chosen to best serve demand. Individuals who travel either
earlier or later than they would like to incur “schedule delays”. These delays are unavoidable with
public transport unless vehicles depart continuously around the clock, which is impossible.

Constructing a timetable is part of the overall transit planning process, which also includes
network design, a choice of service frequency (i.e., time headways between vehicles) for each
route, and allocations of vehicles and crews to routes. This is one of the most complex network
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problems in operations research (Israeli and Ceder, 1996; Marqués et al., 1996). The current paper
focuses on the timetabling sub-problem using an explicit traveller choice model.

The transit timetabling problem is related to the well known p-median problem in operations
research (see for example Larson and Odoni, 1981; Labbé et al., 1995), where the objective is to
locate p facilities (e.g., post offices) in order to minimize some measure of distance between the
facilities and their users. In the transit vehicle timetabling problem, facilities are transit vehicles,
users are travellers, and the distance separating them is measured in time rather than geographical
location.

While the parallels between the transit timetabling problem and the p-median problem are close,
there are three differences between the standard formulation of the p-median problem and the
timetabling problem as treated here. First, users and facilities are typically assumed to be located
at a discrete set of nodes. Travellers, however, may want to depart at any time, and it is more
accurate to model their desired travel times as being distributed continuously as a function of time
of day. Transit vehicles too can (subject to logistics constraints) be scheduled at any time, so that a
continuum approach is appropriate for both transit supply and transit demand. Indeed, the
continuum approach has been standard in location theory since Hotelling’s (1929) seminal article.
There is a variant of the p-median problem in which customers are assumed to be distributed
continuously on a network. Following the terminology in Labbé et al. (1995, 3.3.3) it will be
referred to here as the S-continuous p-median problem.

A second difference between the prototypical p-median problem and the timetabling problem is
that travellers’ schedule delay costs can be different for arriving early and arriving late. Someone
traveling to an important meeting, for example, bears a much higher cost for arriving 10 min after
the meeting starts than from getting there 10 min early. The timetabling problem therefore cannot
be formulated using a distance metric with the property that the distance between two points is the
same in either direction.

Finally, the costs of schedule delay vary with the purpose of the trip, family time pressures,
income, and other individual and trip-specific characteristics. Designing a transit timetable on the
basis of a representative or “‘average” traveller can result in aggregate costs well above the op-
timum, as will be shown.

A simple version of the timetabling problem is studied in this paper. There is a given number of
individuals who travel by transit on a single link. Preferred travel times and unit schedule delay
costs for arriving early or late vary from person to person. Service on the route is provided by a
fixed number of vehicles. Vehicle capacity constraints are ignored, so that a vehicle can carry any
number of passengers without congestion. Also ignored are logistics problems, such as how to get
each vehicle to the starting point on the route at its designated time.

Two location models are considered. In the first, travellers’ desired travel times are distributed
over a segment of the day and rescheduling of trips between days is impossible. This is an example
of the “line”” model pioneered by Hotelling (1929) and widely used in location theory. It has been
applied to modeling public transit systems by Alfa and Chen (1995) and Kraus and Yoshida
(1999), to competition between private bus companies by Dodgson et al. (1993) and Ellis and Silva
(1998), and to competition between passenger rail companies by Whelan et al. (1998). Using
analytical methods Newell (1971) has solved for an optimal bus timetable using a line model.
However, travellers in his model incur waiting time rather than schedule delay costs, and their
arrival rate at the bus stop is exogenous.
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In the second location model it is assumed that desired travel times are distributed around the
clock and that rescheduling of trips between days is possible. This is an example of the “circle”
model, also frequently used in location theory, and used to model competition in bus markets by
Evans (1987) and Ireland (1991). One of the goals of this paper is to highlight the differences
between the optimal bus timetables for these two models, and relatedly the importance of
adopting the best model to describe the transit market in a given region.

The analysis for both the line model and the circle model proceeds in two steps. The first step is
to determine for an arbitrary timetable of vehicles which individuals will travel on which vehicles.
This can be thought of as a demand allocation problem. Given the assumption of no congestion
on transit or other externalities, individuals’ vehicle choices are optimal in this step. The second
step is to determine the timetable that minimizes total schedule delay costs given the behaviour of
individuals identified in step one.

The paper is organized as follows. Section 2 describes the line model in which travellers’ pre-
ferred travel times are distributed on a finite time segment. Section 3 addresses the demand al-
location and optimal timetabling problems when individuals differ in their preferred travel times
but have identical schedule delay cost functions. An analytical solution is derived for the case in
which the distribution of preferred travel times is uniform. Section 4 builds on Section 3 by al-
lowing for individual differences in the costs of traveling earlier or later than desired. Some of the
properties of the demand allocation and optimal timetabling problems identified in Section 3 do
not generalize in the face of this heterogeneity. Section 5 analyzes the circle model. A summary
and directions for further research are provided in Section 6.

2. The line model

Due to economies of vehicle size, public transit service is generally provided with large vehicles
according to a timetable with sometimes substantial time headways between vehicles. Most transit
users suffer a schedule delay even if the transit system is reliable and adheres perfectly to the
timetable. This contrasts with travel by automobile, which can be initiated at any time. Schedule
delays on auto trips are only incurred either inadvertently due to random travel times, or de-
liberately to avoid peak-period congestion — as in Vickrey (1969). Thus, the trade-off between
travel time and schedule delay that is essential to modeling trip timing decisions in private
transportation is not as fundamental in public transportation. To keep the analysis simple,
congestion will be ignored. It is assumed that the travel speeds and station dwelling times of
transit vehicles are independent of the passenger load (and the same for all vehicles), and further
that passengers incur no disutility from crowding in vehicles, on platforms, at bus stops, etc.

To facilitate an analytical solution as far as possible, attention is focused on a single transit line
with an origin node, a terminal node, and no intermediate stops. To be concrete, the model will be
presented as one of an urban bus line, although it is also applicable to streetcars, light rail and
subways. And though the model is limited to a single link in a network, it is unnecessary to assume
that travellers on the link begin and end their trips at the same points. The only relevant char-
acteristic of a trip is when the traveller wants to ride the link in question.

In the absence of congestion, travel time on the link is a constant, 4. A vehicle that departs from
the origin node at time ¢ therefore arrives at the terminal node at time ¢, = ¢ + 4. To simplify the



792 A. de Palma, R. Lindsey | Transportation Research Part B 35 (2001) 789-813

notation it is assumed without loss of generality that 2 = 0 so that ¢, = ¢. Departure time and
arrival time are then the same, and it is possible to refer unambiguously to the “time” at which a
trip is made.

Each individual is assumed to have a most preferred trip time, denoted #*, and to incur a
schedule delay cost if traveling at time ¢ # ¢* instead. The schedule delay cost function D(-) is
assumed to depend only on the difference between ¢ and #*, and to have the piecewise linear form

D(t—1)=plr ="+t =], (1)

where f is the schedule delay cost per minute of arriving early (before ¢*), y is the schedule delay
cost per minute of arriving late (after #*), and [x] " = Max][0,x]. Eq. (1) has been widely used for the
case f§ =y in the literature on automobile trip timing, as well as a number of studies of public
transport. To allow for increasing marginal disutility from increasing earliness or lateness, a
strictly convex function could be assumed instead (e.g. Ellis and Silva, 1998), although doing so
would complicate the algebra.

The number of travellers, V, on the line is taken as given, i.e., independent of the schedule delay
cost incurred on a trip. The distribution function of desired travel times, F(-), is assumed to be
absolutely continuous with respect to the Lebesgue measure. (This assures that the total schedule
delay cost function to be minimized is differentiable in the cases that are considered.) The dis-
tribution is assumed to have a support [0, L] so that F(0) =0 and F(L) = N. The time interval
[0, L] can be thought of as the period during which most people wish to travel, e.g., 6-10 a.m. for
the morning commute. It is assumed that trips cannot be rescheduled to another day. Thus, an
individual who wants to travel at 10 p.m. on Wednesday cannot (or will not) defer it until 7 a.m.
on Thursday.

Until Section 4, it is assumed that individuals are identical except for their desired travel times.
It will be convenient to refer to an individual with desired trip time ¢* simply as “individual #*”.

The bus system is assumed to operate n buses at times T3, ..., T,, where 7; < T; for i < j. Each
individual must therefore travel at 7; for some i. Each is assumed to minimize his/her trip cost.
Given the same constant (zero) travel time for each bus, and no differences in fares (which are
implicitly zero), this means that a traveller will choose the bus that has the lowest schedule delay
cost. Individual #* will choose bus 1 if # <T;, and choose bus n if t* > T,. If neither of these
inequalities holds, then 7; <# <7T;,, for some i=1,...,n— 1. As a convention assume that
someone who is indifferent between two buses selects the earlier bus. Then individual #* with
T; < t* < T, chooses bus i if

Bt —T) <y(Ty1 — 1),

and chooses bus i + 1 otherwise. Let £, |, i =1,...,n— 1, denote the desired travel time of an
individual who is indifferent between bus i and bus i + 1. And define #;, =0 and ¢, ,,, = L. It then
follows that
(BTi+9Ti0)/(B+y) fori=1,....n—1,
tin=10 fori =0, (2)

L for i = n.

All travellers with #* € (¢, ;,¢;,,] choose bus i. Those with t* € (¢ ;, T;) travel late, those with

e (T,»,ti’ji 1) travel early, and anyone with t* = T; travels on time. If f =y, then the “market
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boundary” #;,, | between bus i and bus 7 + 1 is located halfway between 7; and 7;,;. As the cost of
arriving early (f) increases, the boundary shifts to the left and ridership on bus i 4+ 1 increases at
the expense of bus i. Analogously, as the cost of arriving late (y) increases, the boundary shifts to

the right.

3. Optimal timetables with homogeneous schedule delay cost functions

In this section, it is assumed that travellers have the same schedule delay cost parameters, f and
7. Though all may differ in their desired travel times, they will be referred to as “homogeneous”
individuals. Heterogeneity in ff and y will be considered in Section 4.

The bus system operators are assumed to choose T7i,...,7, to minimize the total schedule
delay costs of the N travellers. As noted in the introduction, this problem is related to the well
known p — median problem in operations research. Because the optimal bus timetable here
involves n buses, and provides service to a continuous distribution of travellers with asymmetric
early and late cost penalties (f # y), it will be called the asymmetric S-continuous n-median
problem.

Given the optimal timetable for each n, and values for the operating cost and fixed cost per bus,
it is possible to solve numerically for the number of buses that minimizes the sum of travellers’
schedule delay costs and bus system costs. This interesting and practically important problem is
not addressed here; for a recent treatment see Kraus and Yoshida (1999).

3.1. Optimality conditions

Let f(-) denote the density function corresponding to the distribution of desired travel times,
F(-). Given a timetable Tj,. .., T,, total schedule delay costs are

C(Tl,...,Tn):y/Ol(Tl—z)f dt+ﬁ/ (t—=T)f(t)dt+---

JH//;*( dt+ﬁ/ (t—T)f(¢) de + - -

i—1i

w1 [ G—arwdp / (e = L)1 (1) db.

n—1,n

The first line in this sum specifies the schedule delay costs incurred by riders on bus 1, the second
line specifies the costs of riders on bus 7, and the last line the costs of riders on bus 7.

The function C(+) is to be minimized by choice of the timetable 71, ..., 7,. This task is com-
plicated by the fact that C(-) may not be a convex function of the 7;. To see this, suppose as shown
in Fig. 1 that desired travel times are concentrated in three symmetric peak periods, centred about
ti, t4 and ¢,, respectively, with the early and late peaks of equal size and smaller than the central
peak. Assume n = 2. One plausible solution, shown by the large black dots, is to schedule the first
bus at #; and the second bus slightly to the right of # at #5. (Scheduling the second bus at #s rather
than #, reduces schedule delay costs for travelers in the late peak without increasing aggregate
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Fig. 1. A distribution of preferred travel times for which total schedule delay costs are not convex.

schedule delay costs of travelers in the central peak by very much.) Another possibility, shown by
the open dots, is to schedule the first bus just before #, at #;, and the second bus at #. This yields
the same total cost as the first timetable. But scheduling the two buses at some convex combi-
nation of these two solutions, such as bus 1 at # = (1/2)4+ (1/2)t3 and bus 2 at
te = (1/2)ts + (1/2)t; (see the shaded dots), would result in schedule delay costs that are strictly
higher.

Because the cost function is not convex, optimization methods such as Newton’s and fastest
descent are not guaranteed to find a global minimum. With this caveat in mind, the analysis will
proceed on the assumption that the first-order conditions for minimization of C(0) nevertheless
do define a global minimum. This is the case when the density function f(0) is uniform, as will be
assumed in much of what follows. A proof that the first-order conditions define a global optimum
is provided in Appendix A for the more general case of heterogeneous individuals, considered in
Section 4.
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The first-order condition for the timing of bus 1 is

aC(Tl N atT 2
— t) dt — 1) dt <l ) (T -1 t
aTl / (1) ﬁ/l f(t) de + 12— 7( 1,2) f(lz)GT]

(3)
This condition stipulates that total schedule delay costs do not change if bus 1 is rescheduled slightly
later. The three terms in Eq. (3) are interpreted as follows. The first term denotes the increase in late
arrival costs for riders on bus 1 who prefer to travel earlier than 7;. The second term denotes the
reduction in early arrival costs for riders on bus 1 who prefer to travel later than 77. And the final term
is the change in schedule delay costs for travellers with #* = #] , who switch from traveling late on bus
2 to traveling early on bus 1. By Eq. (2), the third term is zero, and Eq. (3) simplifies to

n 2
2| rwa=p [T @)
T
The first-order conditions for 75, ..., T,, are similar
y f t)dt = [3/ f()yde, i=2,...,n (5)
t*

i—1,i

The system of n Egs. (4) and (5) defines the optimal timetable. The solution of this system is the
homogeneous asymmetric S-continuous n-median of the distribution f(+).

Proposition 1. The solution to the homogeneous asymmetric S-continuous n-median problem over
the segment [0,L], T7, ..., T?, satisfies the first-order conditions:

0
T 1H~1

p [ @ di=p " feyde, i=1,...n,

* )
tll!

where the market boundaries t;,,,, i

=0,...,n, are given by Eq. (2).

Note that the solution depends on the shape of the density function /() but not on the scale,
i.e., on the total number of users, N. Note also that the solution depends only on the ratio f//y and
not on the scale of the schedule delay cost parameters. If » = 1, the optimal timetable for the one
bus can be solved, implicitly or explicitly, from Eq. (4), which reduces to

p
F(T") =—"—. 6
() =5 (6
With two or more buses, a numerical solution is typically required.

3.2. A uniform distribution of desired travel times

Suppose that 7* is uniformly distributed: f(#) = N/L for 0 <#* <L and f () = 0 otherwise.
Consider first the case of one bus. Given Eq. (6), this bus is optimally located on [0, ] at

p

(R mL

(7)
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The bus is scheduled earlier the larger the cost per minute of arriving late relative to early (y/f).
Average schedule delay cost per traveller is

o L B
Cn:]_2ﬁ+y . (8)

Note that the traveller with the earliest desired travel time, #* = 0, incurs the maximum schedule
delay cost of 77, _; = (By/B + 7)L. The traveller with the latest desired arrival time, #* = L, incurs
the same cost: B(L —T7,_,) = (By/B + y)L. Meanwhile, the traveller with #* = T _, incurs no
schedule delay cost. Given the uniform density of ¢*, the average schedule delay cost is just half of
the maximum, as recorded in Eq. (8).

Suppose now that there are n buses. The first-order conditions in Egs. (4) and (5) become

N N .

VZTI :ﬂz(t172_Tl)7 9)
N . N, ., .

VZ(Ti_ti—l,i):ﬂz(ti,iH_Ti)’ i=2,...,n—1, (10)
N ) N

i) = s -1, 1)

Egs. (9)—(11) have a unique solution which — as noted above — is a global maximum (see Appendix
A). Substituting Eq. (2) into Egs. (9)—(11) in turn, one obtains

2 L}
n=trq (12)
i
T;’+l:27-;'_7;'717 i:Z,...,n—l, (13)
(ﬂ"i_V)L"i_VTnfl
T, = . 14
512 (14)
It follows by induction from Egs. (12) and (13) that
T, ZWTI‘ (15)

Egs. (14) and (15) then give T} = (f/f + y)L/n, which with Eq. (15) yields finally

T}L:(z‘—ﬁfr )é, i=1,....n—1.
, )

Therefore the optimal timetable is periodic. Each bus serves a market of width L/»n and carries
N /n riders. Market boundaries are defined by the times:
L

i—, i=1,...,.n—1.
n

* R
liis1 =

Average schedule delay cost can be deduced immediately from Eq. (8) for one bus by substituting
L/n in place of L
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_ 1 By L
0o_ 1 = 16
En 2f4+yn (16)

The solution is summarized in the following proposition.

Proposition 2. Consider the homogeneous asymmetric S-continuous n-median problem over the
segment [0, L] when desired travel times are uniformly distributed. The optimal bus timetable is

70 = (i——"— é, i=1,...,n.
B+y)n

The market boundaries between buses are

L
=i—, i=1,...,n—1,
n

*
ti,i+l

and average schedule delay cost is

—0 1 By L

¢ = :
" 2B4yn

The solution has several properties
. Buses are spaced L/n apart, and each carries N /n passengers.
. A fraction (f/ + 7) of the riders on each bus arrives late, and a fraction (y/f + y) arrives early.
. The average cost for early arrivals and the average cost for late arrivals are both equal to .
. The ratio of the total late schedule delay cost to the total early schedule delay cost is /7.
. If p =, the buses are located at (1/2)(L/n), (3/2)(L/n),...,(2n — 1/2)L/n. This is a standard
result in location theory (e.g. Archibald et al., 1986).
6. In the limit B/y | 0, T° | (i — 1)L/n, i =1,...,n: as late arrival becomes infinitely costly rela-
tive to early arrival, buses are scheduled so that no one has to travel late. Analogously, as
Bly T oo, T), Ti(L/n), i=1,...,n.

DR W N =

4. Optimal timetables with heterogeneous schedule delay costs

So far it has been assumed that while travellers differ in their preferred travel times, they have
the same (i.e., homogeneous) schedule delay cost functions. In reality, scheduling costs depend on
a number of individual-specific characteristics such as trip purpose, time pressures, occupation,
age, sex, income and family size. As far as occupation, for example, individuals who work in-
dependently, such as writers, software developers and academics, typically have weaker prefer-
ences for when they start work than do workers who interact with others, such as stockbrokers,
assembly line workers and clerical support staff. Independent workers also tend to incur lower
relative penalties for starting “late” than starting “early” than do interactive workers.

Suppose then that there are K classes or groups of travellers, indexed by k, with class k
comprising N* individuals with schedule delay cost parameters * and y*, and a distribution of
desired travel times characterized by the density function g*(-). Estimates of the p*, y* and g* ()
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can be obtained using revealed or stated preference methods, see for example (Nuzzolo and
Russo, 1996, Tables 1 and 2; Whelan et al., 1998, Table 4). Section 4.1 following identifies the
first-order conditions for an optimal timetable given arbitrary g*(-) functions. Section 4.2 derives
an explicit solution when the g*(-) are uniform.

4.1. Optimality conditions

Define f*(-) = N*g*(-). The choice of bus by class k is defined by market boundaries analogous
to those given by Eq. (2)

(ﬂT-f-')) t+l)/(ﬁk+yk) fori:la"'vn_L

o )0 for i =0, _
i = I forien. k=1,... K. (17)
For a given bus timetable, 71, ..., T,, total schedule delay costs for all users are

cT,....T) =Y [y"/ol(Tl—t)f"(t) dzﬂfk/t” (1= T/ () di + - -

k

+yA (T — dz+ﬁ/ (t—T)f () dt + -~

+V"/W (T, — £)/5(2) dt—i—ﬁk/T (t — T,)f (1) dt].

The first-order condition for the timing of bus 1 is

oC(Ty,....T,) o
C(TléTl [ / f t_ﬁ/Tl fk(t)dt]

+ zk: { [ﬁk (f]ffz - T1) —M(D f’f*z)}fk(flffz) aatzz } =0. (18)

Eq. (18) is interpreted in the same way as Eq. (3) for homogeneous travellers. As in Eq. (3), the
term in square brackets on the second line is zero for all k£ by Eqgs. (17), and (18) reduces to the
analogue of Eq. (4)

Ejﬁfﬂ@ﬂzgjﬂgammi (19)

The first-order conditions for 73, ..., T, are analogues of Eq. (5)

T; tﬁﬂ
Zkﬁfwﬂz;k%,mmfiﬂ””' 0)

i—1i
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The solution to the system of n Egs. (19) and (20), 77,...,T°, will be called the heterogeneous

asymmetric S-continuous n-median of the distributions f*(-), k = 1,...,K. The following propo-
sition generalizes Proposition 1.

Proposition 3. The solution to the heterogeneous asymmetric S-continuous n-median problem over
the segment |0, L] satisfies the first-order conditions

. T; il = . tﬁﬂ ktdt’ i:l,...,n,
S o] - [ r0d]

k

i—

where the market boundaries ¢, ,,

i=0,....n,k=1,... K, are given by Eq. (17).
4.2. Uniform distributions of desired arrival times

It is now assumed that desired travel times in each class are uniformly distributed on [0, L].
With this assumption it is possible to derive explicitly the optimal bus timetable and to compare it
with the corresponding optimal timetable for homogeneous travellers. To save on writing, define
oF = (B**/B* + %), J¥ = N*/N (the fraction of the population that belongs to class k), and the
population-weighted mean values of the f, 7* and &

B=) I
k

r= Z/lkykv (21)
k

A= kok.
Zk:/L

To compare the bus timetable with the timetable for homogeneous travellers, repeated use will be
made of the following lemma which is proved in Appendix B.

Lemma 1. Let B, I' and A be as defined in Eq. (21). Then BI' = (B + I') A, with a strict inequality
unless y*/ B* is the same for all classes of travellers.

The optimal bus timetable can be derived using the same steps as in Section 3 for the timetable
with homogeneous travellers, see Appendix C. The solution is given in

Proposition 4. Consider the heterogeneous asymmetric S-continuous n-median problem over the
segment [0,L] when desired travel times are uniformly distributed for each class of traveller. The
optimal bus timetable is

0 (i—1)BI' + B4

7 = L i=1,...n 2
in = 1Bl + B+ '~ " (22)

Buses are spaced (BI'/(n — 1)BI' + (B + I')A)L apart. The market boundaries between buses for
traveller class k are
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yk

, (i = 1)BI +BA + 5 BI
= L
hitl (mn—1)Br+B+1)4

i=1,....n—1, k=1,...,K.

And the average schedule delay cost for all travellers is

1 BI'A
e = L. 2
T2~ 1)BI + (B+1)4 (23)

Recall that with homogeneous travellers, buses are optimally spaced L/n apart and carry equal
loads of N/n. With heterogeneous travellers, buses are also uniformly spaced, but the spacing is
greater. The difference in spacing is, by Proposition 4

BT 1
L—-L2Bl—(B+T1)A>0, 24
(n—1)BI'+(B+1T1)4 n (B+1) (24)

where = means identical in sign. By the Lemma, the right-hand side of Eq. (24) is strictly greater
than zero unless all traveller classes have the same relative costs of early and late arrival. This
result can be seen as a sort of product differentiation. Individuals with relatively strong aversion to
being late (high 7*/f*) are accommodated by scheduling the first bus very early so that few
travellers in this group are obliged to travel late. And individuals with relatively strong aversion to
being early (small y* /") are served by scheduling the last bus very late. Compared to the optimal
timetable with homogeneous travellers, therefore, buses are run over a longer part of the day
when travellers differ in their relative early and late arrival costs.

Recall too from Section 3 that with homogeneous travellers the first bus and last bus are run at
times 7, = (B/p +y)L/n and T,), = [n — (y/p + y)]L/n. With one group B = 5, I' =y, and these
equations can be written 7, = (BB+TI')L/n and T, = [n — (B/B + I')|L/n. Comparing these
scheduled times with the scheduled times for heterogeneous travellers given in Eq. (22) one has

B L nBA B L
0o __Z Z_ — ~=(B+4+1I)4—-Br<o0 25
" B+Tn [(n—l)BF+(B+F)A B+F}n (B+T) ’ (23)
and
r L (n—1)BI’ + BA r L

0 _|lp—— 2= —(n———=)|Z B —B+14>0
{” B—i—F}n [n(n—l)BF+(B+F)A (" B+F>]n (B+1)420,

(26)

where the inequalities follow from the Lemma. These results are summarized in the following
proposition.

Proposition 5. Buses are more widely spaced in the optimal timetable with heterogeneous travellers
than with homogeneous travellers. The first bus is scheduled earlier (see Eq. (25)), and the last bus is
scheduled later (see Eq. (26)). The bus timetable is therefore extended at both the beginning and at
the end of the day.
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Because the first bus is run earlier, and the last bus later, than with homogeneous travellers one
might suspect that these buses cater to peripheral or “isolated” travellers and accordingly carry
fewer than N /n passengers each. To see whether this is so, let N; denote the number of passengers

carried by bus i, i = 1,...,n. Using Proposition 4 it is readily shown that
N* Bl + k/B* + Y )N* /N)BI
L (n—1)Br'+(B+1)4
and
N _Zﬂ<L_tk* )_BF+FA— (3004 + 9 )N*/N)BT (28)
" L neln) (n—1)Br+(B+1)4

It then follows that

Ny +N, —gNé — (n—=2)[B — (B+T)4].

By the Lemma, the right-hand side of this equation is strictly negative for n > 3 unless y*/f" is the
same for all groups. Therefore the first and last buses together do indeed carry a smaller than
average load. Yet it is possible for either the first bus or the last bus to carry an above-average
load. To see this, consider a numerical example in which there are two groups (K = 2) of equal
size. Following the typology entertained at the beginning of Section 4, suppose group 1 consists of
interactive workers and group 2 consists of independent workers. Small’s (1982) empirical study
of commuters is based on a sample of mainly interactive workers for which he obtains an estimate
of (y/B) = 4. Take this value for 7!/ B'. Since Egs. (27) and (28) depend only on the ratio of
schedule delay cost parameters, one can assume without loss of generality that f' = 1. Given
y'/p' = 4, this implies y' = 4.

Suppose first that the independent workers have relatively weak schedule preferences so that
p*=7>=1.1f n=3, buses 1, 2 and 3 then carry respectively 31.2%, 34.4% and 34.4% of the
passengers. Bus 3 carries more than a third of the total. If n = 10, bus 1 carries 9.2% of the total
load and buses 2...10 carry 10.1% each.

Suppose alternatively that independent workers have relatively strong schedule preferences so
that > = y2 = 4. Then with n = 3, buses 1, 2 and 3 carry 34.4%, 34.4% and 31.2% respectively of
the passengers. Now it is the first bus that carries more than a one-third share. With n = 10, buses
1...9 carry 10.1% of the load each, and bus 10 carries 9.2%.

One property of the optimal timetable with a homogeneous population, Property 6 in Section
3.2, continues to hold in a modified form with heterogeneous users. Pick any class k. In the limit
B* 1 o0, B 1 0o, while I' and A remain finite. From Eq. (22) one then obtains limge, T, ,?n =L.
Thus, if any class of traveller is infinitely averse to arriving early, the last bus i 1s scheduled at the
latest desired travel time so that no one has to arrive early. Similarly, lim ., 7} 1, = 0:if any class
of traveller is infinitely averse to arriving late, the first bus is scheduled at the earliest desired travel
time so that no one has to arrive late.

From the foregoing it is evident that heterogeneity in schedule delay costs should be taken into
account in choosing a bus timetable. Indeed, one can ask: how much would travellers’ aggregate
schedule delay costs increase if heterogeneity were ignored in designing the timetable? To address
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this question it will be assumed that the timetable is inappropriately chosen on the basis of a
“representative’ traveller whose schedule delay cost parameters equal the population-weighted
mean values; i.e. B, I' and 4. Hereafter this will be called the “representative traveller”” approach.

Using the representative traveller approach the timetable is set as in Proposition 2 with B in
place of f and I' in place of y:

where the superscript R denotes the representative traveller approach. Again by Proposition 2,
average schedule delay costs are computed to be

1 L
R ==, 29
=547 (29)
As is shown in Appendix D, average schedule delay costs will actually be
1 1Bl —(B+1)4) L
R=_d14- 2T 7L,z
n 2{ n AB+T) } n (30)

Using Eqgs. (23), (29) and (30), and after some algebra, one obtains:

Proposition 6. Consider the heterogeneous asymmetric S-continuous n-median problem when de-
sired travel times are uniformly distributed on [0, L] for each class of traveller. If the representative
traveller approach is used to choose the timetable, average schedule delay cost will be higher than at
the true optimum by the fraction

2
B+I)4
k- n-1 [(BF—(B+F)A)2] -1 (1——( i )

Gl BI(B1 )4 = Ea | (31

EO n2
BI’

n

By the Lemma, this fraction is strictly positive for n > 1 unless y*/ B* is the same for all k. Average
costs according to the representative traveller approach are lower than actual costs by the fraction

1 BI—(B+I)4

- TaBD 50 (32)
ok - 141 BI—(B+N4A = 7
n n  AB+T)

Again, this fraction is strictly positive unless y*/ B is the same for all k.

To get an idea of the possible magnitude of the error introduced by the representative traveller
approach, consider again the numerical example in the previous section with ' =1 and ' = 4.
For group 2 take f* = 1 and assume 72/f> = r(y'/f"), where typically » < 1. And suppose there
are two buses (n = 2). With this parameterization one obtains

B+I)4 (64+4r)(1+9r)

Br 10(1+7)(1+4r)

If 2/p* = 9'/B", then r = 1, (B+I')A4/BI') = 1, and by Eq. (31) use of the representative trav-
eller approach results in no error in the choice of timetable, and therefore no increase in costs. If,
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contrarily, independent workers are equally averse to early and late arrival, then 9> = %, r = 1 /4,
and ((B+ I')4/BI') = 0.91. With two buses, ((¢f —2°)/c°) = 0.025. The optimal timetable is not
chosen, and average schedule delay costs are increased by about 2.5%. Suppose finally that y* = 0,
which is conceivable if independent workers do not like to rise early in the morning, but are
otherwise indifferent about their work hours. One then has » = 0 and ((B+ I')4/BI') = 3/5. With
two buses, (¢ —2°/c°) = 1/6. Use of the representative traveller approach results in costs that are
one sixth higher than optimal. With five buses the increase is still above 10%. While such gross
errors seem unlikely in practice, this exercise does highlight the importance of obtaining infor-

mation about travellers’ characteristics when designing a bus timetable.

5. The circle model

Up to now it has been assumed that the distribution of preferred travel times is limited to part
of the day and that trips cannot be rescheduled from one day to another. This is consistent with
the Hotelling (1929) line model. An alternative topology is the circle model developed by Salop
(1979). In this model, desired travel times are spread around the full 24 h clock and rescheduling
of trips between days is feasible. This means that an individual who prefers to travel on day d
before the first bus on that day will no longer necessarily take that bus, but may instead take the
last bus on day d — 1. Similarly, someone who prefers to travel after bus n on day d may choose to
take the first bus on day d + 1.

The line model and the circle model are both idealizations. The main virtue of these models is
analytical tractability, rather than realism. It can be debated which model provides the better
approximation to the demand for bus travel (or demand for another public transportation mode)
in a given market. Indeed, both models have been adopted in the literature on public transpor-
tation. To the extent that the two models “bracket™ the reality of a given market, it is instructive
to examine them both.

The only change that has to be made to the line model in converting it to a circle is in Eq. (17)
defining the market boundaries between buses. Let L now denote the length of a day (24 h). In
place of #* = 0, one obtains #* = (B°(T, — L) + y*T1/B* ++*). And in place of #* ., = L, one has
= (BT, +5(Ty + L)/ + y*). These two new relations are actually the same because bus
n+ 11is bus 1 on the next day. Market boundaries for all buses are therefore described by a single
equation

o BT YT

ke Ci=1,...
ii+1 ﬁk+'yk

=
>
Il
—_
lal

(33)

where Ty =T, — L and T, = T} + L.

The market boundaries of the first and last buses are now determined by travellers’ choices,
rather than by end-of-the-day constraints. Though this change to the model may seem minor, it
affects the optimal bus timetable with heterogencous travellers in a qualitative way. To see this,
suppose as earlier that each class of traveller has a uniform distribution of desired travel times. It
then follows (see Appendix E) that, regardless of how parameters * and 7* vary across classes, the
optimal timetable is periodic: all buses are scheduled L/n apart and carry N/n passengers each.



804 A. de Palma, R. Lindsey | Transportation Research Part B 35 (2001) 789-813

Unlike with the line model, the bus timetable is no longer extended to accommodate a diverse
population. This is because with rescheduling of trips between days now possible, a traveller can
always choose between taking an early bus or taking a late bus (or possibly a bus on time).

Given the periodicity of the timetable, the average schedule delay cost of travellers in class k is
given by the analogue of (16)

EkO:l ﬁka L
n Zﬂk_l_,ykn'

The average schedule delay cost of all travellers together is

i 1 g% \L 1 L
e = ek = - 2> —=_A-. 34
o §k et 2(5 el bt (34)

k

Comparing (34) with the average schedule delay cost formula (23) for the line model one obtains
immediately from the lemma.

Proposition 7. Consider the heterogeneous asymmetric S-continuous n-median problem with uni-
formly distributed desired travel times for each class of traveller. Average schedule delay costs are
lower for the optimal timetable on the circle than for the optimal timetable on the line unless 7*/ B is
the same for all k.

Average schedule delay costs are lower in the circle model because travellers can reschedule
trips between days, whereas they cannot in the line model.

If the representative traveller approach were used, the same periodic timetable (except perhaps
for its phase) would be chosen. Average schedule delay costs would be computed to be

1 Bl L
/\R__—_
“T3B+In (35)

Given Egs. (34) and (35) one obtains:

Proposition 8. Consider the heterogeneous asymmetric S-continuous n-median problem when de-
sired travel times are uniformly distributed around the circle for each class of traveller. If the rep-
resentative traveller approach is used, an optimal timetable will be chosen and ¢® = ¢°. But average
schedule delay costs will be overestimated by a fraction

eR—¢) BIr—(B+1TI)4

n

@  (B+D)4

n

> 0.

By the Lemma, this fraction is strictly positive unless y*/B* is the same for all k.

Costs are overestimated using the representative traveller approach because it overlooks the
ability of travellers to choose between travelling early and late according to their individual
preferences. Using the two-group parameterization of Section 4.2, the proportional error is about
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10% if » = 1/4, and as large as 2/3 if » = 0. The miscalculation in travel costs through use of a
representative traveller can thus be appreciable. Because costs are overestimated with the ap-
proach, a transit authority could be induced to overinvest in bus capacity.

The brief analysis in this section illustrates that, as is well known in location theory,
the properties of location problems vary according to whether they are set on a line or on a
circle.

6. Conclusions

This paper uses the location theory framework to study the optimal timetable for transit ve-
hicles on a single transit line. Each transit rider is assumed to have an ideal time of day to travel,
and to incur a schedule delay cost from traveling earlier or later. Two location models are con-
sidered: the line model and the circle model. In the line model, travellers’ preferred travel times are
distributed over part of the day, and rescheduling of trips between days is impossible. In the circle
model, desired travel times are distributed around the clock, and rescheduling of trips between
days is possible.

The modelling approach used here is similar to Vickrey (1969) model of automobile trip timing
in its use of schedule delay cost functions. It differs in that congestion is ignored (i.e., travel time is
constant), and more fundamentally in that — unlike drivers — transit users cannot start a trip
whenever they want to, but rather must choose a departure time according to the bus timetable.
The model is also related to the p-median problem of optimal facility location. It differs from the
standard formulation in treating the locations of both users (travellers) and facilities (transit
vehicles) as continuous rather than discrete, and in allowing unit schedule delay costs to differ for
early and late arrival and from traveller to traveller.

While the formulation of the optimal timetable problem here is simple, finding a solution
can be difficult because the total schedule delay cost function to be minimized is not neces-
sarily a convex function of the choice variables (the departure times of the buses). The so-
lution is characterized by a set of necessary first-order conditions (see Propositions 1 and 3).
In general, numerical methods are required to solve these equations. But an explicit analytical
solution can be found when the distribution of preferred travel times is uniform. Section 3
describes the solution when users have identical schedule delay cost functions (Proposition 2),
and Section 4 for the case where their costs differ (Proposition 4). The two solutions are
compared in Section 4.2 (Proposition 5).

The optimal timetable is also derived for the circle model and compared with the timetable for
the line model (Proposition 7). Finally, the use of a representative traveller approach to compute
the timetable is considered, and biases in the calculation for the line and circle models are
identified (Propositions 6 and 8).

The model omits a number of important features of transit systems that should be included in
future work:

1. The number of transit vehicles has been treated as exogenous. Given a solution to the optimal
bus timetable for any fixed number of vehicles, and data on operating and maintenance costs
per bus, the optimal number of buses could be determined by minimizing the sum of total
schedule delay and system costs.
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2. Scheduling of transit vehicles may be constrained by network considerations, such as the time
required to do the back-haul on a round trip, or to move vehicles between routes.

3. The number of travellers is taken as given, thereby suppressing individual trip frequency and
mode choice decisions. While this assumption might be defended on the grounds that fare elas-
ticities of demand are low in the short run, fare elasticities typically increase over time and de-
mand can be relatively sensitive to time headways (Berechman, 1993) which are determined by
the choice of timetable.

4. Travellers are assumed to know the bus timetable, so that they can reach a bus stop just as a
bus arrives and do not have to wait. An alternative assumption, adopted by Evans (1991) and
Ellis and Silva (1998), is that travellers do not know the timetable. In practice, of course, some
individuals know the timetable and others do not. The decision whether to be informed de-
pends on how much schedule delay and waiting time can be reduced, which in turn depends
on how frequently trips are made and on headways between buses (Jolliffe and Hutchinson,
1975; Tisato, 1991).

5. Buses are assumed to adhere perfectly to the timetable. In reality, travel times are random and
buses can arrive late or be cancelled. Stochasticity in bus arrival times and its impact on riders’
departure time choice are considered by Sumi et al. (1990).

6. Vehicle capacity constraints should be incorporated, as in (Alfa and Chen, 1995; Kraus and
Yoshida, 1999; Lam et al., 1999b).

7. Service on a given route can be provided by more than one type of vehicle. Transit operators
face a trade-off between the scale economies of larger vehicles, and the more frequent service
made possible by smaller vehicles such as jitneys, which have been successfully integrated in
various cities (Klein et al., 1997).

8. Congestion aboard vehicles and at bus stops (or on railway station or subway platforms) has
been ignored. Empirical evidence on the importance of congestion on light rail systems is doc-
umented in Lam et al. (1999a).
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Appendix A. Sufficiency of first-order conditions with heterogeneous travellers and uniform
distributions of desired travel times

Because interchanging any two buses in a timetable leaves total schedule delay costs un-
changed the objective function is clearly not globally convex. The first-order conditions are
nevertheless sufficient for a cost minimum if the total schedule delay cost function is convex
for Ti,...,T, such that 0<T1<Th < --- <T,<L. Convexity will be established by showing
that the matrix of second-order partial derivatives is positive definite given this ordering of
buses.
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The first-order derivative of total schedule delay costs with respect to 7} is given in Eq. (18)

—=Z[v"/0nf"( /3/1 70

—i—Z{[ (tlz >_Vk( —112)}fk(12)2171§12}a

(A1)

where the term in square brackets on the second line is zero. Given uniform distributions for each

traveller class (*(z) = f*) Eq. (A.1) reduces to

aTl ka[kT i f12—T1)]-

The non-zero second-order derivatives are

Zf +5k and 6T16T2 Zf o,

6T2

Fori=2,...,n—1 the first-order derivatives are

N

k

or

_ k
+;{ <lll ) V( lll>:|f(lll) aT
O
+ ; [ (zz+l i) - Vk(TiH - tz]'c,i+1):|fk(tz]'€,i+1) a]j,r .
By Eq. (17) the last two lines are zero. Given uniform distributions Eq. (A.3) reduces to

fox

- ka [yk(Ti - tllfjlvi) B ﬁk(ti,Hl - T,)}
k

The non-zero second-order derivatives are

ka k 62C —_kaék and a2c __kaak
aT2 ©QTOT 4 0T8T, 4=

Finally, for i = n the first-order derivative is

22 - Z [Vk t"* ﬁ / fk ]

k

+ 280 = ) =T z’,:’:l,,»}f'f(zf,:*_l,n)aﬁ;j"

By Eq. (17) the second line is zero, and Eq. (A.5) reduces to

Zf[ (T, =) = B(L—-T)].

(A.2)

(A.3)

(A.4)

(A.5)
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The non-zero second-order derivatives are

arz Z 7E* and aT 16T kaak (A.6)

Now given f" and = N¥/N, f* = J*N/L. It follows from Eq. (21) that 3°, f*f* = N/LB,
S =N/Lr and S, f¥6" = N/LA. Given Egs. (A.2), (A.4) and (A.6), the matrix of second-
order derivatives of C can then be written

r+4 -4
- —A4 24 -4
S —4 24
oTOT;| L )
. .‘ _A
A4 B+ 4

Let D; denote the principal minor of order i. [(0*C/0T,0T;)] is positive definite if
Di>07 = 1,...,]’1

Lemma 2.

D;i=8"iy+8 >0, i=1,....n—1.

Proof (By induction). Dy = I' + A > 0. By inspection of the matrix
Diyy = 20D; — 6°D;_y = 8(2D; — 6D;_y) = 8(28" '[iy + 6] — 86 2[(i — 1)y + 4))
=di+1)y+9. O

Finally
=(B+0)D, 1 — D, 2= (B+08)0"*[(n—1)y+ ] — 56" >[(n—2)y + 9]
=B [(n= 1)y + 0]+ 8" [(n=1)p+6 = (n=2)p = 8] = p&"*[(n = 1)y + 8] + 5" 'y > 0.

Appendix B. Proof of Lemma

By the definitions of B, I' and 4 in (21)
BF—(B+F)A:<zlkﬁk><Zlkyk> <Zﬂﬁ +sz k)Z
Zkﬂﬁ (Zkk) (Zﬂﬁ>zl V

T ﬁ+? A 5+V.

(B.1)

By Jensen’s inequality

Z“k B > (Zkﬁkfk)(zk’lk[):{) _ BB 7
= BT (DB + (A BT
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with a strict inequality unless %/ p" is the same for all k. Again, by Jensen’s inequality
Z)k ﬂka < (Zk ;tkﬁk)(Zk }“kyk) _ BI
k ﬁk + ¢ (Zk )~kﬁk) + (Zk ’lkyk) B+T
with a strict inequality unless y*/ B* is the same for all k. We therefore have on the right-hand side
of (B.1)

k ﬁkﬁk k k k pk ﬂ’/ BB BI’ .
Zx ﬁkﬂk(;m)—(;m)zy‘ﬁ e >B+Fr—337+r_o,

k k

with a strict inequality unless y*/ B is the same for all classes of travellers. [

Appendix C. Optimal timetable with heterogeneous travellers and uniform distributions of desired
travel times on the line

With uniform distributions of desired travel times, the first-order conditions Egs. (19) and (20)
become:

N N
Zw"TTFZﬁ"T(t’;Z—TI), (C.1)
k k
Zy— P ) = Zﬂ (&5, —T), i=2...,n—1, (C.2)

ZV— w0 ,) = Zﬁ—L T,) (C.3)

Multiplying through by L/N, using JF = N* /N, and substituting (17), these conditions can be
written

k k
P LY ( - TQ—T1>,
Z Z By Bt

p* 7
Z;kak<7;— (kiTi—l +k4Ti)>
B+ B+

k

k
v .
_Z)" <ﬂ +V 7—}+ﬁk+yk7}+l_7;>7 1:27"'7}1_17

k k
Z)“ka <Tn - (ﬁﬂ—l +ﬁ7‘n>> = zk:ikﬂk(L - T,)

k

These equations in turn reduce to

I'ny=A4(0-T),
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A(Z‘_TLI)ZA(T;H%_T;)’ i:2,...,7’l—1,
AT, — T-1) = B(L — T,,).

Solving these equations sequentially yields

r+4
n-"t4g, (C.4)
A
T;’+1:2Ti_Ti*17 i:2,...,}1—1, (CS)
B A

L=ggltg a0 (C.6)

It follows by induction from Egs. (C.4) and (C.5) that
[ — 1)+ 4
T, = (i-Hhr+4 7). (C.7)
A

Egs. (C.6) and (C.7) then give

Ty = B4 L

' m=1)Br+ B+
which with (C.7) yields finally the timing of each bus
(i—1)BI' + B4 _

T = =1,...

T w-DBr+B+Da T
and the market boundaries between buses

. yk

o BB B Ll k=1 K

hit+l (mn—1)Br +(B+1)4 B ’ e
The spacing between buses is

BI'
I-T.,= (C.8)

(n—1BI +(B+T)4"

The average schedule delay cost for all travellers is a weighted average of the costs for travellers
in each time interval between buses. Given (C.8) the average cost for group k for * € [T, T ],
i=1,....n—11s

R i BI .
o Tk (n—)Bl+ (B+1)4"

i=1,....n—1

For ¢ € [0, T}),

BA .
(n— 1Bl + (B+1)4 "

_ 1 7
S = EVleo =5
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and for * € [T?, L],

g r4 .
2 (n—1)Blr+(B+1I)4

1
Eﬁn = _ﬁk(l‘ - Tr?) =
m2
Average schedule costs are
Zﬁk{co,ﬂ et (10— T + 2, (LT ],

which reduces after substitution to

Lo 1 BI'A

_ L
T2 - 1Bl +(B+1)4

Appendix D. Average schedule delay costs on the line using the representative traveller approach

Using the representative traveller approach the timetable chosen is

Tx D VE
=\l | — 1= N (B
o B+T)n’ R

Buses are spaced L/n apart. Average schedule delay costs for this timetable are calculated using
the same procedure as for the optimal timetable. The average cost for group k individuals with
€ [T, Tl is

in? Tit+ln

1 B9 L
R — By

i’"_iﬁk+ykz7 i=1,....n—1.
For t* € [0, T ],
k
=5~ g
For t* € [T}, L],
an—tpu-ry L L L
Lo 2B+In

Average aggregate schedule costs are
=+ Zz"{-"" T, + ek - 1) et (- T b

which reduces after substitution to
_R_l{l lBF—(B—i—F)A} L

- A—.
n  AB+T) n

cn—2
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Appendix E. Optimal timetable with heterogeneous travellers and uniform distributions of desired
travel times on the circle

The optimal timetable is derived using the same logic as for the line model, but with fewer steps.
The first-order conditions for the 7, are

ka * ka Jox .
Z’y T(Y;_rf—l,i):Zﬁ T(ti,i-y-l_Ti)v lzl,...,l’l. (El)
k k

Substituting for the tf‘j‘ 1 with Eq. (33), (E.1) reduces to

MT=T) = ATy —T), i=1,....n
or

Ty =2T,—T,4, i=1,...,n. (E.2)
By induction one gets

T, =il + (i — T, (E.3)

where 7,, the timing of the last bus on the previous day, is arbitrary. Using the relation
T, = Ty + L, one obtains finally

L
Ti:To—Fl—.
n

The timetable is periodic with buses spaced L/n apart.
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