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Control of a Nonholonomic Mobile
Robot Using Neural Networks

R. Fierro and F. L. Lewis,Fellow, IEEE

Abstract—A control structure that makes possible the inte-
gration of a kinematic controller and a neural network (NN)
computed-torque controller for nonholonomic mobile robots is
presented. A combined kinematic/torque control law is developed
using backstepping and stability is guaranteed by Lyapunov
theory. This control algorithm can be applied to the three basic
nonholonomic navigation problems: tracking a reference trajec-
tory, path following, and stabilization about a desired posture.
Moreover, the NN controller proposed in this work can deal
with unmodeled bounded disturbances and/or unstructured un-
modeled dynamics in the vehicle. On-line NN weight tuning
algorithms do no require off-line learning yet guarantee small
tracking errors and bounded control signals are utilized.

Index Terms—Backstepping control, Lyapunov stability, mo-
bile robots, neural networks, nonholonomic systems.

I. INTRODUCTION

M UCH has been written about solving the problem
of motion under nonholonomic constraints using the

kinematic model of a mobile robot, little about the problem of
integration of the nonholonomic kinematic controller and the
dynamics of the mobile robot [19]. Moreover, the literature
on robustness and control in presence of uncertainties in the
dynamical model of such systems is sparse.

Another intensive area of research has been neural-network
(NN) applications in closed-loop control. In contrast to clas-
sification applications, in feedback control the NN becomes
part of the closed-loop system. Therefore, it is desirable to
have a NN control with on-line learning algorithms that do
no require preliminary off-line tuning [14]. Several groups by
now are doing rigorous analysis of NN controllers using a
variety of techniques [5], [14]–[18]. In [14] a multilayer NN
controller with guaranteed performance has been developed
and successfully applied to control of rigid robot manipulators,
flexible-link robotic systems and position/force control. In this
paper, we present an application of this NN controller to a
mobile robot system. Due to the presence of the NN in the
control loop, special steps must be taken to guarantee that the
entire system is stable and the NN weights stay bounded.
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Elééctrica, Casilla Postal 17-01-2759, Quito, Ecuador.

F. L. Lewis is with the Automation and Robotics Research Institute, The
University of Texas at Arlington, Fort Worth, TX 76118-7115 USA.

Publisher Item Identifier S 1045-9227(98)04759-6.

Traditionally the learning capability of a multilayer NN
has been applied to the navigation problem in mobile robots
[23]–[25]. In these approaches the NN is trained in a prelimi-
nary off-line learning phase with navigation pattern behaviors;
that is, the mobile robot is taught to exhibit navigation
behaviors such as obstacle avoidance, wall following and so
forth. Sensor signals (e.g., ultrasonic) are fed to the input
layer of the network, and the output provides motor control
commands (e.g., turn left). Furthermore the dynamics and
nonholonomic motion constraints of the mobile robot are
not taken into account. In contrast, the objective of this
work is to design an adaptive neuro-controller based on the
universal approximation property of NN. The NN learns the
full dynamicsof the mobile roboton-line. We still need, of
course, a higher-level controller (i.e., trajectory generator) to
carry out complex navigation behaviors; this could be provided
by techniques such as [23] and [25].

Mobile robot navigation can be classified into three basic
problems [4]: tracking a reference trajectory, following a path,
and point stabilization. Some nonlinear feedback controllers
have been proposed for solving these problems [2]–[4], [10].
The main idea behind these algorithms is to find suitable
velocity control inputs which stabilize the closed-loop system.

In the literature, the nonholonomic tracking problem is
simplified by neglecting the vehicle dynamics and considering
only the steering system. To compute the vehicle control
inputs, it is assumed that there is “perfect velocity tracking”
[10]. There are three problems with this approach: first, the
perfect velocity tracking assumption does not hold in prac-
tice, second, disturbances are ignored, and, finally, complete
knowledge of the dynamics is needed [19]. Thebackstepping
control approach [11] proposed in this paper corrects this
omission by means of an NN controller. It provides a rigorous
method of taking into account the specific vehicle dynamics
to convert a steering system command into control inputs
for the actual vehicle. First, feedback velocity control inputs
are designed for the kinematic steering system to make the
position error asymptotically stable. Then, an NN computed-
torque controller is designed such that the mobile robot’s
velocities converge to the given velocity inputs. This control
approach can be applied to a class ofsmoothkinematic system
control velocity inputs. Therefore, the same design procedure
works for all of the three basic navigation problems mentioned
above. The NN controller is independent of the navigation
problem because its function is to compute the torque inputs
based on approximating the nonlinear dynamics of the cart.

This paper is organized as follows. In Section II, we present
some basics of nonholonomic systems and NN. Some struc-
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Fig. 1. A nonholonomic mobile platform.

tural properties of the nonholonomic dynamical equations
are given including an important “skew-symmetry” property.
Section III discusses the nonlinear kinematic-NN backstep-
ping controller as applied to the tracking problem. Stability
is proved by Lyapunov theory. Section IV presents some
simulation results. Finally, Section V gives some concluding
remarks.

II. PRELIMINARIES

A. A Nonholonomic Mobile Robot

A mobile robot system having an-dimensional configu-
ration space with generalized coordinates and
subject to constraints can be described by [13] and [20]

(1)

where is a symmetric, positive definite inertia
matrix, is the centripetal and coriolis matrix,

denotes the surface friction, is
the gravitational vector, denotes bounded unknown distur-
bances including unstructured unmodeled dynamics,

is the input transformation matrix, is the
input vector, is the matrix associated with the
constraints, and is the vector of constraint forces.

We consider that all kinematic equality constraints are
independent of time, and can be expressed as follows:

(2)

Let be a full rank matrix formed by a set of
smooth and linearly independent vector fields spanning the
null space of , i.e.,

(3)

According to (2) and (3), it is possible to find an auxiliary
vector time function such that, for all

(4)

The mobile robot shown in Fig. 1 is a typical example of
a nonholonomic mechanical system. It consists of a vehicle
with two driving wheels mounted on the same axis, and a
front free wheel. The motion and orientation are achieved by
independent actuators, e.g., dc motors providing the necessary
torques to the rear wheels.

The position of the robot in an inertial Cartesian frame
is completely specified by the vector where xc,

yc are the coordinates of the center of mass of the vehicle,
and is the orientation of the basis with respect
to the inertial basis.

The nonholonomic constraint states that the robot can only
move in the direction normal to the axis of the driving wheels,
i.e., the mobile base satisfies the conditions of pure rolling and
nonslipping [1], [21]

(5)

It is easy to verify that is given by

(6)

The kinematic equations of motion (4) of in terms of its
linear velocity and angular velocity are

(7)

where and and are the
maximum linear and angular velocities of the mobile robot.
System (7) is called the steering system of the vehicle.
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The Lagrange formalism is used to derived the dynamic
equations of the mobile robot. In this case ,
because the trajectory of the mobile base is constrained to
the horizontal plane, i.e., since the system cannot change its
vertical position, its potential energy remains constant. The
kinetic energy is given by [13]

(8)

The dynamical equations of the mobile base in Fig. 1 can be
expressed in the matrix form (1) where

(9)

Similar dynamical models have been reported in the literature;
for instance in [21] the mass and inertia of the driving wheels
are considered explicitly.

B. Structural Properties of a Mobile Platform

The system (1) is now transformed into a more appropri-
ate representation for controls purposes. Differentiating (4),
substituting this result in (1), and then multiplying by ,
we can eliminate the constraint matrix . The complete
equations of motion of the nonholonomic mobile platform are
given by

(10)

(11)

where is a velocity vector. By appropriate
definitions we can rewrite (11) as follows:

(12.a)

(12.b)

where is a symmetric positive definite inertia
matrix, is the centripetal and coriolis matrix,

is the surface friction, denotes bounded
unknown disturbances including unstructured unmodeled dy-
namics, and is the input vector. If ,
it is easy to verify that is a constant nonsingular matrix
that depends on the distance between the driving wheels
and the radius of the wheel (see Fig. 1). Equation (12)

describes the behavior of the nonholonomic system in a new
set of local coordinates, i.e., is a Jacobian matrix that
transforms velocities in mobile base coordinatesto velocities
in Cartesian coordinates. Therefore, the properties of the
original dynamics hold for the new set of coordinates [13].

Boundedness: , the norm of the , and are
bounded.

Skew-Symmetry:The matrix is skew symmetric.
Proof: The derivative of the inertia matrix and the cen-

tripetal and coriolis matrix are given by

Since is skew-symmetric [13], it is straightforward
to show that (13) is skew-symmetric also

(13)

C. Feedforward Neural Networks

A “two-layer” feedforward NN in Fig. 2 has two layers
of adjustable weights. The NN output is a vector with
components that are determined in terms of thecomponents
of the input vector by the formula

(14.a)

where are the activation functions and is the number
of hidden-layer neurons. The inputs-to-hidden-layer intercon-
nection weights are denoted by and the hidden-layer-to-
outputs interconnection weights by . The threshold offsets
are denoted by .

Many different activation functions are in common use,
including sigmoid, hyperbolic tangent, and Gaussian. In this
work we shall use the sigmoid activation function

(14.b)

By collecting all the NN weights into matrices of
weights one can write the NN equation is terms of
vectors as

(15)

with the vector of activation functions defined by
for a vector The thresholds are

included as the first columns of the weight matrices. To
accommodate this the vectorsand need to be augmented
by placing a “1” as their first element (e.g.,

Any tuning of and then includes tuning of the
thresholds as well.

The main property of a NN we shall be concerned with for
controls purposes is thefunction approximation property[6],
[8]. Let be a smooth function from to . Then, it
can be shown that, as long as x is restricted to a compact set
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Fig. 2. Multilayer feedforward NN.

of , for some number of hidden layer neurons, there
exist weights and thresholds such that one has

(16)

This equation means that an NN can approximate any function
in a compact set. The value ofis called theNN functional
approximation error. In fact, for any choice of a positive
number , one can find a NN such that in .

For controls purposes, all one needs to know is that, for a
specified value of theseideal approximating NN weights
exist. Then, an estimate of can be given by

(17)

where and are estimates of the ideal NN weights that
are provided by some on-line weight tuning algorithms.

A common weight tuning algorithm is the gradient algo-
rithm based on thebackpropagatederror [27], where the
NN is training off-line to match specified exemplar pairs

, with the ideal NN input that yields the desired NN
output . The continuous-time version of the backpropagation
algorithm for the two-layer NN is given by

(18)

where , are positive definite design parameter matrices
governing the speed of convergence of the algorithm. The
backpropagated error is selected as the desired NN output
minus the actual NN output . For the scalar sigmoid

activation function (14.b), for instance, the hidden-layer output
gradient is

(19)

The hidden-layer output gradient or jacobian may be explicitly
computed; for the sigmoid activation functions, it is

(20)

where denotes the identity matrix, and means a
diagonal matrix whose diagonal elements are the components
of vector One major problem in using backprop tuning
in direct closed-loop control applications is that the required
gradients [Jacobian (20)] depend on the unknown plant being
controlled; this make them impossible or very difficult to
compute. Extensive work on confronting this problem has been
done by a number of authors using a variety of techniques, see
for instance [14]–[18] and the references therein.

III. CONTROL DESIGN

An important result in controllability of nonholonomic
systems states that the steering system (10) iscontrollable
regardless the nature of the constraints [3]. A review of the
controllability properties for the kinematic steering system
(10) can be found in [7]. The complete dynamics (10), (11)
consist of the kinematic steering system (10) plus some extra
dynamics (11).
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Backstepping Design:Many approaches exist to selecting
a velocity control for the steering system (10). In this
section, we desire to convert such a prescribed controlinto
a torque control for the actual physical cart. Therefore,
our objective is to design an NN control algorithm so that
(10), (11) exhibits the desired behavior motivating the specific
choice of the velocity .

The nonholonomic navigation problem of steering may
be divided into three basic problems: tracking a reference
trajectory, following a path, and point stabilization. It is
desirable to have a common design algorithm capable of
dealing with these three basic navigation problems. This
algorithm can be implemented by considering that each one of
the basic problems may be solved by using adequate smooth
velocity control inputs. If the mobile robot system can track a
class of velocity control inputs, then tracking, path following
and stabilization about a desired posture may be solved under
the same control structure.

The smooth steering system control, denoted by, can be
found by any technique in the literature. Using the algorithm
to be derived and proved in Section III-C, the three basic
navigation problems are solved as follows.

Tracking: The trajectory tracking problem for nonholo-
nomic vehicles is posed as follows.

Let there be prescribed a reference cart

(21)

with for all , find a smooth velocity control
such that , where , ,

and are the tracking position error, the reference velocity
vector and the control gain vector, respectively. Then compute
the torque input for (1), such that as .

Path Following: Given a path in the plane and the
mobile robot linear velocity , find a smooth velocity
control input where and are the
orientation error and the distance between a reference point
in the mobile robot and the path, respectively, such that

and Then compute the
torque input for (1), such that as .

Point Stabilization: Given an arbitrary configuration ,
find a smooth time-varying velocity control input

such that . Then compute
the torque input for (1), such that as

As an example to illustrate the validity of the method we
have chosen thetrajectory trackingproblem. Note that,path
following is a simpler problem which requires that only the
angular velocity change in order to decrease the distance
between a given geometric path and the mobile robot.Point
stabilizationcan be solve using the same controller, but in this
case the input control velocities are time varying.

A. NN Control Design for Tracking a Reference Trajectory

The structure for the tracking control system to be derived
in Section III-C is presented in Fig. 3. In this figure,no

knowledge of the dynamics of the cart is assumed. The
function of the NN is to reconstruct the dynamics (11) by
learning it on-line. The contribution of this paper lies in
deriving a suitable from a specific that controls
the steering system (10). In the literature, the nonholonomic
tracking problem is simplified by neglecting the vehicle dy-
namics (11) and considering only the steering system (10).
That is, a steering system input is determined such
that (10) tracks the reference cart trajectory. To compute the
vehicle torque , it is assumed that there is “perfect velocity
tracking” so that , then (11) is used to compute

. There are three problems with this approach: first, the
perfect velocity tracking assumption does not hold in practice,
second, the disturbance is ignored, and, finally, complete
knowledge of the dynamics is needed. A better alternative
to this unrealistic approach is theNN integrator backstepping
methodnow developed.

To be specific, it is assumed that the solution to the
steering system tracking problem in [10] is available. This is
denoted as . Then, a control for (10), (11) is found
that guarantees robust trajectory tracking despite unknown
dynamical parameters and bounded unknown disturbances

.
The tracking error vector is expressed in the basis of a frame

linked to the mobile platform [4], [10] as

(22)

An auxiliary velocity control input that achieves tracking for
(10) is given by [10]

(23)

where are design parameters. If we consideronly
the kinematic model of the mobile robot (4) with velocity input
(23), and assume perfect velocity tracking, then the kinematic
model is asymptotically stable with respect to areference
trajectory (i.e., as [10], [7].

Given the desired velocity , define now the
auxiliary velocity tracking error as

(24)

Differentiating (24) and using (12), the mobile robot dynamics
may be written in terms of the velocity tracking error as

(25)

where the importantnonlinear mobile robot functionis

(26)

The vector required to compute can be defined as

(27)

which can be measured.
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Fig. 3. Tracking by a neural-net control.

Function contains all the mobile robot parameters such
as masses, moments of inertia, friction coefficients, and so on.
These quantities are often imperfectly known and difficult to
determine.

B. Mobile Robot Controller Structure

In applications the nonlinear robot function is at least
partially unknown. Therefore, a suitable control input for
velocity following is given by the computed-torque like control

(28)

with a diagonal positive definite gain matrix, and an
estimateof the robot function that is provided by the
NN. The robustifying signal is required to compensate
the unmodeled unstructured disturbances. Using this control
in (25), the closed-loop system becomes

(29)

where the velocity tracking error is driven by the functional
estimation error

(30)

In computing the control signal, the estimatecan be pro-
vided by several techniques, includingadaptive control. The
robustifying signal can be selected by several techniques,
including sliding-mode methods and others under the general
aegis ofrobust controlmethods.

C. Neural-Net Controller

By using the controller (28), there is no guarantee that the
control will make the velocity tracking error small. Thus, the
control design problem is to specify a method of selecting the

matrix gain , the estimate , and the robustifying signal
so that both the error and the control signals are

bounded. It is important to note that the latter conclusion
hinges on showing that the estimateis bounded. Moreover,
for good performance, the bound on should be in some
sense “small enough” because it will affect directly the position
tracking error . In this section we shall use an NN
to compute the estimate. A major advantage is that this
can always be accomplished, due to the NN approximation
property (16). By contrast, in adaptive control approaches it
is only possible to proceed if is linear in the known
parameters; moreover, tedious analysis is needed to compute
a “regression matrix.”

Some definitions are required in order to proceed.
Definition 3.3.1: We say that the solution of a nonlinear

system with state is uniformly ultimately bounded
(UUB) if there exists a compact set such that for all

, there exists a and a number
such that for all .

Definition 3.3.2: We denote by any suitable vector
norm. When it is required to be specific we denote the-norm
by .

Definition 3.3.3: Given , the Frobe-
nius norm is defined by

(31)

with the trace. The associated inner product is
The Frobenius norm cannot be defined as the

induced matrix norm for any vector norm, but iscompatible
with the 2-norm so that with
and .
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Definition 3.3.4: For notational convenience we define the
matrix of all the NN weights as .

Definition 3.3.5: Define the weight estimation errors as
, , .

Definition 3.3.6: Define thehidden-layer output errorfor a
given as

(32)

The Taylor series expansion of for a given may be
written as

(33.a)

with

(33.b)

the Jacobian matrix and denoting the higher-order
terms in the Taylor series. Denoting , we have

(33.c)

The importance of this equation is that it replaces, which is
nonlinear in , by an expression linear in plus higher-order
terms. This will allow us to determine tuning algorithms for

in subsequent derivations. Different bounds may be put on
the Taylor series higher-order terms depending on the choice
for the activation functions .

The following mild assumptions always hold in practical
applications.

Assumption 3.3.1:On any compact subset of , the ideal
NN weights are bounded by known positive values so that

, , or with
known.

Assumption 3.3.2:The desired reference trajectory is
bounded so that with a known scalar bound,
and the disturbances are bounded so that .

Lemma 3.3.1 (Bound on NN Input x):For each time
in (27) is bounded by

(34)

for computable positive constants.
Lemma 3.3.2 (Bounds on Taylor Series Higher-Order Terms):
For sigmoid activation functions, the higher-order terms in the
Taylor series (33) are bounded by

(35)

for computable positive constants.
We will use an NN to approximate for computing the

control in (28). By placing into (28) the NN approximation
equation given by (17), the control input then becomes

(36)

with a function to be detailed subsequently that provides
robustness in the face of robot kinematics and higher-order
terms in the Taylor series.

Using this controller, the closed-loop velocity error dynam-
ics become

(37.a)

Adding and subtracting yields

(37.b)

with defining in (32). Adding and subtracting now
yields

(37.c)

The key step is the use now of the Taylor series approx-
imation (33.c) for , according to which the error system
is

(38)

where the disturbance terms are

(39)

It is important to note that the NN reconstruction error ,
the disturbance , and the higher-order terms in the Taylor
series expansion of all have exactly the same influence as
disturbances in the error system. The next bound is required.
Its importance it is in allowing one to overbound at each
time by a known computable function.

Lemma 3.3.3 (Bounds on the Disturbance Term):The dis-
turbance term (39) is bounded according to

or

(40)

with known positive constants. Note that becomes larger
with increases in the NN estimation errorand the mobile
robot dynamics disturbances . Proofs of Lemmas 3.3.1–3
are omitted here, details are discovered in [14].

It remains now to show how to select the tuning algorithms
for the NN weights , and the robustifying term so that
robust stability and tracking performance are guaranteed.

Theorem 3.3.1:Given a nonholonomic system (10), (11)
with generalized coordinates independent constraints,

actuators, let the following assumptions hold.
Assumption 3.3.3:The reference linear velocity is constant,

bounded, and for all . The angular velocity is
bounded.

Assumption 3.3.4:A smooth auxiliary velocity control in-
put is prescribed that solves the trajectory tracking
problem for the steering system (10), neglecting the dynamics
(11). A sample [10] is given by (23).

Assumption 3.3.5: is a vector of positive
constants.

Authorized licensed use limited to: Iran Univ of Science and Tech. Downloaded on May 30, 2009 at 04:27 from IEEE Xplore.  Restrictions apply.



596 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 4, JULY 1998

Assumption 3.3.6: , where is a sufficiently
large positive constant.

Take the control for (12) as (36) with robustifying
term

(41)

and gain

(42)

with the known constant in (40). Let NN weight tuning be
provided by (43). Then, for large enough control gain, the
velocity tracking error , the position error , and the
NN weight estimates are UUB. Moreover, the velocity
tracking error may be kept as small as desired by increasing
the gain

(43)

where are positive definite design parameter matrices,
and the hidden-layer gradient or Jacobianis easily

computed in terms of measurable signals—for the sigmoid
activation function it is given by

(44)

which is just (20) with the constant exemplar replaced by
the time function .

Proof: See the Appendix.
The first terms of (43) are nothing but the standard back-

propagation algorithm. The last terms correspond to the-
modification [15] from adaptive control theory; they must be
added to ensure bounded NN weights estimates. The middle
term in (43) is anovel termneeded to prove stability.

Theorem 3.3.1 guarantees that the NN weight estimation
errors are bounded, and the tracking error can be made
arbitrarily small. As time passes the NN updates its weights
learning the dynamics of the mobile roboton-line.

D. Robustness Considerations

In practical situations the velocity and tracking errors are not
exactly equal to zero. The best we can do is to guarantee that
the error converges to a neighborhood of the origin. If external
disturbances drive the system away from the convergence
compact set, the derivative of the Lyapunov function become
negative and the energy of the system decreases uniformly;
therefore, the error becomes small again.

The robust-adaptive controller designed in the previous
section consists of two subsystems: 1) a kinematic controller
and 2) a dynamic controller. The NN-based dynamic controller
provides the required torques, so that the mobile robot’s
velocity tracks a reference velocity input.

Fig. 4. Closed-loop model of a nonholonomic system.

As “perfect velocity tracking” does not hold in practice,
the dynamic controller generates a velocity errorwhich is
bounded by some know constant (Theorem 3.3.1). This error
can be seen as a disturbance for the kinematic system, see
Fig. 4.

The closed-loop kinematic system becomes

where and denote the velocity
tracking error and the desired velocity control input, respec-
tively. The disturbance satisfies the matching condition [28]
i.e., the nonholonomic constraint (5) is not violated. Then, by
using standard Lyapunov methods it can be shown that along a
system’s solution is bounded, and thus is bounded.
The norm of the velocity error affects directly to the norm
of the position error. Note that the norm of the velocity error

depends on the NN functional approximation errorand
the matrix . Since can be made arbitrarily small then

can be made arbitrarily small.

IV. SIMULATION RESULTS

We should like to illustrate the NN control scheme presented
in Fig. 3 and compare its performance with two different
approaches. For this purpose, three controllers have been
implemented and simulated in MATLABTM: 1) a controller
that assumes “perfect velocity tracking;” 2) a controller that
assumes complete knowledge of the mobile robot dynamics;
and 3) an NN backstepping controller which requires no
knowledge of the dynamics, not even their structure. We took
the vehicle parameters (Fig. 1) as kg, kg-
m , m, m, and m/s. The
reference trajectory is a straight line with initial coordinates
and slope of (1, 2) and 26.56, respectively. The controller gains
were chosen so that the closed-loop system exhibits a critical
damping behavior: , . For
the NN, we selected the sigmoid activation functions with

hidden-layer neurons, and
.
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(a)

(b)

Fig. 5. Perfect velocity tracking assumption. (a) Desired (-) and actual (o)
trajectories. Mobile robot initial pisition (2,1),�0 = 10�. (b) Position errors:
Xe (—) and Ye (- -).

A. Controller with Perfect Velocity Tracking Assumption

The “perfect velocity tracking” assumption is made in the
literature to convert steering system inputs into actual vehicle
commands. The response with a controller designed using
this assumption is shown in Fig. 5. Although unmodeled
disturbances were not included in this case, the performance
of the closed-loop system is quite poor. In fact, this result
reveals the need of a more elaborate control system which
should provide a velocity tracking inner loop.

B. Conventional Computed-Torque Controller

The response with this controller is shown in Fig. 6. Since
bounded unmodeled disturbances and friction were included
in this case, the response exhibits a steady-state error. Note
that this controller requires exact knowledge of the dynamics
of the vehicle in order to work properly. Since this controller
includes a velocity tracking inner loop, the performance of the
closed-loop system is improved with respect to the previous
case.

C. NN Backstepping Controller

The response with this controller is shown in Fig. 7.
Bounded unmodeled disturbances and nonsymmetric friction

(a)

(b)

Fig. 6. Conventional computed-torque controller. (a) Desired (-) and actual
(o) trajectories. Mobile robot initial pisition (2,1),�0 = 10�. (b) Position
errors: Xe (—) and Ye (- -).

were included in this case. It is clear that the performance
of the system has been improved with respect to the
previous cases. Moreover, the NN controller requires no
prior information about the dynamics of the vehicle. As the
conventional computed-torque controller, the NN controller
provides a velocity tracking inner loop. The robustifying term
deals with unstructured unmodeled dynamics and disturbances.
The validity of the NN controller has been evidently verified.

In both cases 4.2 and 4.3, the mobile basemaneuvers, i.e.,
exhibits forward and backward motions (Figs. 6–7), to track
the reference trajectory. Note that there is no path planning
involved—the mobile base naturally describes a path that
satisfies the nonholonomic constraints.

V. CONCLUSIONS

A stable control algorithm capable of dealing with the three
basic nonholonomic navigation problems, and that does not
require knowledge of the cart dynamics has been derived using
an NN backstepping approach. This feedback servo-control
scheme is valid as long as the velocity control inputs are
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. NN backstepping controller: (a) mobile robot trajectory, (b) position errors. (c) position error, (d) some NN weights. (e) NN outputs, (f) torques.

smooth and bounded, and the disturbances acting on actual
cart are bounded.

A key point in developing intelligent systems is thereusabil-
ity of the low-level control algorithms, i.e., the same control
algorithm works if the behavior or goal of the system has been
modified. This is the case of the control structure reported
in this paper. Section III-C considers the case oftrajectory
tracking behavior. Redefining the control velocity input in

that section, one may generate a different stable behavior,
for instancepath following behavior, without changing the
structure of the controller. Moreover, if the mobile robot is
modified or even replaced, the NN controller is still valid.

In fact, perfect knowledge of the mobile robot parameters
is unattainable, e.g.,friction is very difficult to model by
conventional techniques. To confront this, an NN controller
with guaranteed performance has been derived.

Authorized licensed use limited to: Iran Univ of Science and Tech. Downloaded on May 30, 2009 at 04:27 from IEEE Xplore.  Restrictions apply.



FIERRO AND LEWIS: CONTROL OF A NONHOLONOMIC ROBOT 599

In summary, an NN dynamic controller together with a well-
designed kinematic controller may improve the performance
of the mobile robot drastically. There is not need ofa priori
information of the dynamic parameters of the mobile robot,
because the NN learns them on-the-fly.

APPENDIX

PROOF OF THEOREM 3.3.1

Let the approximation property (16) hold with a given
accuracy for all in the compact set . Consider the
following Lyapunov function candidate:

(45)

where

(46)

Differentiating yields

(47)

Differentiating and substituting now from the error system
(38) we obtain

(48)

The skew symmetry property (Section II-B) makes the second

term zero, and since , , the tuning rules
yield

(49)

Since

(50)

there results

(51)

where is the minimum singular value of Lemma
3.3.3 was used, and the last inequality holds due to (42).

The velocity tracking error is

(52)

Fig. 8. Graphical representation of Theorem 3.3.1.

by substituting (51) and the derivatives of the position error
in (47), we obtain

(53)

by using (52) and defining yield

(54)

Since the first four terms in (54) are negative, there results

(55)

Thus, is guaranteed negative as long as the term in braces
in (55) is positive. Defining and
completing the square yields

which is guaranteed positive as long as either

(56)

or

(57)

Therefore, is negative outside a compact set. According
to a standard Lyapunov theory and LaSalle extension, this
demonstrates the UUB of both and

Note that can be kept arbitrarily small by increasing
the gain in (56). Finally, the right-hand sides of (56),
(57) can be taken as practical bounds on and the NN
weight estimation errors, respectively. Moreover (56) and (57)
represent the worst case one can have. In fact, the actual
convergence region is a subset of the set given by (56) and
(57), see Fig. 8.
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